PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 3 trang 195 SBT toán 9 tập 2

Đề bài

Cho tam giác \(ABC\) có \(AB=5cm, AC = 12cm\) và \(BC = 13cm.\) Kẻ đường cao \(AH\) \((H\in BC)\). Tính độ dài các đoạn thẳng \(BH\) và \(CH.\)

Phương pháp giải - Xem chi tiết

Sử dụng:

- Định lí Pytago đảo: Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.
 

 

- Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Khi đó ta có các hệ thức sau:

+) \(A{B^2} = BH.BC\) hay \({c^2} = a.c'\).

+)\(A{C^2} = CH.BC\) hay \({b^2} = ab'\).

Lời giải chi tiết

 

Ta có:

\(\begin{array}{l}
A{B^2} + A{C^2} = {5^2} + {12^2} = 169\\
B{C^2} = {13^2} = 169\\
\Rightarrow A{B^2} + A{C^2} = B{C^2}
\end{array}\)

Theo định lí Pytago đảo thì tam giác \(ABC\) vuông tại \(A\).

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào tam giác \(ABC\) vuông tại \(A\), ta có:

\(A{B^2} = BC.BH\)

\(\Rightarrow BH = \dfrac{{A{B^2}}}{{BC}} = \dfrac{{{5^2}}}{{13}} = \dfrac{{25}}{{13}}\, \)\(= 1\dfrac{{12}}{{13}}\left( {cm} \right)\)

\(CH = BC - BH = 13 - \dfrac{{25}}{{13}} = \dfrac{{144}}{{13}} \)\(\,= 11\dfrac{1}{{13}}\,\left( {cm} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved