1. Nội dung câu hỏi
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:
\(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\; + {\rm{ }}4x{\rm{ }}-{\rm{ }}2y{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0.\)
Viết phương trình ảnh của (C)
a) qua phép vị tự tâm O, tỉ số \(k{\rm{ }} = {\rm{ }}2;\)
b) qua phép vị tự tâm \(I\left( {1;{\rm{ }}1} \right),\) tỉ số \(k{\rm{ }} = {\rm{ }}-2.\)
2. Phương pháp giải
Nếu \({V_{(I,k)}}{\rm{[}}M(x,y){\rm{]}} = M'(x',y')\). Khi đó, \(\left\{ \begin{array}{l}x' - a = k(x - a)\\y' - b = k(y - b)\end{array} \right.\) với \(I(a;b)\)
Phép vị tự tỉ số k biến đoạn thẳng thành đoạn thẳng nhân lên với |k|, biến tam giác thành tam giác đồng dạng với tỉ số đồng dạng |k|, biến đường tròn bán kính r thành đường tròn bán kính \(r' = |k|.r\).
3. Lời giải chi tiết
Đường tròn \(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\; + {\rm{ }}4x{\rm{ }}-{\rm{ }}2y{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\) có tâm A(–2; 1) và bán kính \(R = \sqrt {{{\left( { - 2} \right)}^2} + {1^2} - \left( { - 4} \right)} = 3\)
a) Gọi đường tròn (C’) là ảnh của đường tròn (C) qua \({V_{\left( {O,{\rm{ }}2} \right)}}\)
Khi đó (C’) có tâm ảnh của A qua \({V_{\left( {O,{\rm{ }}2} \right)}}\) và bán kính
Gọi \(A'\left( {x';{\rm{ }}y'} \right)\) là ảnh của A qua \({V_{\left( {O,{\rm{ }}2} \right)}}\).
Suy ra \(\overrightarrow {OA'} = 2\overrightarrow {OA} \) với \(\overrightarrow {OA} = \left( { - 2;1} \right)\) và \(\overrightarrow {OA'} = \left( {x';y'} \right)\)
Do đó \(\left\{ \begin{array}{l}x' = 2.( - 2) = - 4\\y' = 2.1 = 2\end{array} \right.\)
Vì vậy \(\;A'\left( {-4;{\rm{ }}2} \right).\)
Vậy phương trình đường tròn (C’) là: \(\;{\left( {x{\rm{ }} + {\rm{ }}4} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}2} \right)^2}\; = {\rm{ }}36.\)
b) Gọi đường tròn (C’’) là ảnh của đường tròn (C) qua \({V_{\left( {I,{\rm{ }}-2} \right)}}.\)
Khi đó \(\left( {C'''} \right)\) có tâm ảnh của A qua \({V_{\left( {I,{\rm{ }}-2} \right)}}\) và bán kính \(R'' = {\rm{ }}\left| {-2} \right|.R{\rm{ }} = {\rm{ }}2.3{\rm{ }} = {\rm{ }}6.\)
Gọi \(A''\left( {x'';{\rm{ }}y''} \right)\) là ảnh của A qua \({V_{\left( {I,{\rm{ }}-2} \right)}}.\)
Suy ra \(\overrightarrow {IA'} = - 2\overrightarrow {IA} \) với \(\overrightarrow {I{A'}} = \left( {{{x'}'} - 1;{{y'}'} - 1} \right)\) và \(\overrightarrow {IA} = \left( { - 3;0} \right)\)
Do đó \(\left\{ \begin{array}{l}x'' - 1 = \left( { - 2} \right).( - 3)\\y' - 1 = \left( { - 2} \right).0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x'' = 7\\y' = 1\end{array} \right.\)
Suy ra tọa độ \(A''\left( {7;{\rm{ }}1} \right).\)
Vậy phương trình đường tròn (C”) là: \({\left( {x{\rm{ }}-{\rm{ }}7} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}1} \right)^2}\; = {\rm{ }}36.\)
Unit 7: Things that Matter
CLIL
Tiếng Anh 11 mới tập 2
ĐỀ CƯƠNG HỌC KÌ 1 - SINH 11
SBT Ngữ văn 11 - Kết nối tri thức tập 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11