Đề bài
Chứng minh \(C_n^0{3^n} + C_n^1{3^{n - 1}} + ... + C_n^k{3^{n - k}} + ... + C_n^{n - 1}3 + C_n^n\)
\( = C_n^03 + C_n^13 + ... + C_n^k{3^k} + ... + C_n^{n - 1}{3^{n - 1}} + C_n^n{.3^n}\) với \(0 \le k \le n,n \in \mathbb{N}\)
Phương pháp giải - Xem chi tiết
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Lời giải chi tiết
Áp dụng công thức nhị thức Newton ta có:
\({\left( {a + b} \right)^n} = C_n^0.{a^n}.{b^0} + C_n^1{a^{n - 1}}.{b^1} + ... + C_n^k{a^{n - k}}.{b^k} + ... + C_n^{n - 1}a.{b^{n - 1}} + C_n^n.{a^0}.{b^n}\)
Thay \(a = 3,b = 1\) ta được
\(\begin{array}{l} \Leftrightarrow {\left( {3 + 1} \right)^n} = C_n^0{.3^n}{.1^0} + C_n^1{3^{n - 1}}{.1^1} + ... + C_n^k{3^{n - k}}{.1^k} + ... + C_n^{n - 1}{3.1^{n - 1}} + C_n^n{.3^0}{.1^n}\\ \Rightarrow {4^n} = C_n^0{3^n} + C_n^1{3^{n - 1}} + ... + C_n^k{3^{n - k}} + ... + C_n^{n - 1}3 + C_n^n\end{array}\)
Thay \(a = 1,b = 3\) ta được
\(\begin{array}{l}{\left( {1 + 3} \right)^n} = C_n^0{.1^n}{.3^0} + C_n^1{1^{n - 1}}{.3^1} + ... + C_n^k{1^{n - k}}{.3^k} + ... + C_n^{n - 1}{1.3^{n - 1}} + C_n^n{.1^0}{.3^n}\\ \Rightarrow {4^n} = C_n^03 + C_n^13 + ... + C_n^k{3^k} + ... + C_n^{n - 1}{3^{n - 1}} + C_n^n{.3^n}\end{array}\)
Suy ra điều phải chứng minh
Đề thi giữa kì 2
Đề thi giữa kì 2
Chủ đề 8: Bảo vệ môi trường tự nhiên
Kiến thức chung
Chủ đề 2: Thị trường và cơ chế thị trường
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10