Đề bài
Biết rằng a là một số thực khác 0 và trong khai triển của \({(ax + 1)^6}\), hệ số của \({x^4}\) gấp 4 lần hệ số của \({x^4}\). Tìm giá trị của a.
Phương pháp giải - Xem chi tiết
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{(ax)^k}{b^{n - k}}\)
Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{a^k}{b^{n - k}}\)
Lời giải chi tiết
Áp dụng công thức nhị thức Newton, ta có:
\({(ax + 1)^6} = C_6^0{\left( {ax} \right)^6} + C_6^1{\left( {ax} \right)^5} + ... + C_6^k{\left( {ax} \right)^{6 - k}} + ... + C_6^6\)
Số hạng chứa \({x^4}\) ứng với \(6 - k = 4\) hay \(k = 2\). Hệ số của số hạng chứa \({x^4}\) là \(C_6^2{a^4}\)
Số hạng chứa \({x^2}\) ứng với \(6 - k = 2\) hay \(k = 4\). Hệ số của số hạng chứa \({x^2}\) là \(C_6^4{a^2}\)
Theo giả thiết ta có: \(C_6^2{a^4} = 4C_6^4{a^2} \Leftrightarrow 15{a^4} = 4.15{a^2} \Leftrightarrow {a^2} = 4\) (do \(a \ne 0\))\( \Leftrightarrow \left[ \begin{array}{l}a = 2\\a = - 2\end{array} \right.\)
Vậy \(a = 2\) hoặc \(a = - 2\).
Chủ đề 2: Mạng máy tính và internet
Review 3
Gặp Ka - ríp và Xi- la
Chuyện chức phán sự đền Tản Viên
Chương 1. Sử dụng bản đồ
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10