1. Nội dung câu hỏi
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) tâm O bán kính R = 9 và cho điểm A khác O. Gọi (C’) là ảnh của (C) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow {OA} \) và phép vị tự \({V_{\left( {O; - \frac{1}{3}} \right)}}\). Tìm diện tích hình tròn (C’).
2. Phương pháp giải
Diện tích hình tròn \(S = \pi {R^2}\), R là bán kính hình tròn.
3. Lời giải chi tiết
Phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo \(\overrightarrow {OA} \) và phép vị tự \({V_{\left( {O; - \frac{1}{3}} \right)}}\) biến đường tròn (C) thành đường tròn (C’).
Suy ra phép đồng dạng đó có tỉ số là \(k = \left| { - \frac{1}{3}} \right| = \frac{1}{3}\)
Đường tròn (C’) có tâm O’, bán kính R’.
Suy ra O’ là ảnh của O qua phép đồng dạng tỉ số \(\frac{1}{3}\)
Gọi M là điểm bất kì nằm trên đường tròn (C).
Suy ra M’ là ảnh của M qua phép đồng dạng tỉ số \(\frac{1}{3}\)
Khi đó ta có \(O'M' = \frac{1}{3}OM\)
Vì vậy \(R' = \frac{1}{3}R = \frac{1}{3}.9 = 3\)
Diện tích hình tròn (C’) là: \({S_{(C')}} = \pi R{'^2} = \pi {3^2} = 9\pi \)
Vậy diện tích hình tròn (C’) là \(9\pi \).
Bài 17: Phenol
CHƯƠNG 4: ĐẠI CƯƠNG VỀ HÓA HỌC HỮU CƠ
Chuyên đề 2. Lí thuyết đồ thị
Unit 7: Artists
Tác giả - Tác phẩm Ngữ văn 11 tập 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11