Đề bài
Tính góc lớn nhất của tam giác ABC, biết các cạnh là \(a = 8,b = 12,c = 6\)
Lời giải chi tiết
Áp dụng hệ quả của định lí côsin ta có:
\(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{12}^2} + {6^2} - {8^2}}}{{2.12.6}} = \frac{{29}}{{36}}\\ \Rightarrow \widehat A \simeq 36^\circ 20'\end{array}\)
\(\begin{array}{l}\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{8^2} + {6^2} - {{12}^2}}}{{2.8.6}} = - \frac{{11}}{{24}}\\ \Rightarrow \widehat B \simeq 117^\circ 17'\end{array}\)
\(\begin{array}{l}\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \frac{{{8^2} + {{12}^2} - {6^2}}}{{2.12.8}} = \frac{{43}}{{48}}\\ \Rightarrow \widehat A \simeq 26^\circ 23'\end{array}\)
Ta thấy rằng \(117^\circ 17' > 36^\circ 20' > 26^\circ 23'\) nên góc B là góc lớn nhất trong tam giác ABC đã cho
Chủ đề 4. Một số cuộc cách mạng công nghiệp trong lịch sử thế giới
Chủ đề 4. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Grammar Reference
Chủ đề 4: Thực hiện trách nhiệm với gia đình
Unit 7: Tourism
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10