Đề bài
Hai chiếc tàu thủy P và Q cách nhau 50 m. Từ P và Q thẳng hàng với chân A của tháp hải đăng AB ở trên bờ biển, người ta nhìn chiều cao AB của tháp dưới các góc \(\widehat {BPA} = 40^\circ \) và \(\widehat {BQA} = 52^\circ \). Tính chiều cao của tháp hải đăng đó.
Lời giải chi tiết
Góc \(\widehat {PQB}\) là góc bù của tam giác BPQ nên ta có:
\(\widehat {BQP} = \widehat {QPB} + \widehat {PBQ} \Rightarrow \widehat {PBQ} = \widehat {BQP} - \widehat {QPB} = 52^\circ - 40^\circ = 12^\circ \)
Áp dụng định lí sin trong tam giác BPQ ta có
\(\frac{{PQ}}{{\sin B}} = \frac{{BQ}}{{\sin P}} = \frac{{50}}{{\sin 12^\circ }} \Rightarrow BQ = \frac{{50}}{{\sin 12^\circ }}.\sin P = \frac{{50}}{{\sin 12^\circ }}.\sin 40^\circ \)
Áp dụng định lí sin vào tam giác ABQ ta có:
\(\frac{{BQ}}{{\sin A}} = \frac{{AB}}{{\sin Q}} \Rightarrow AB = \frac{{BQ}}{{\sin A}}.\sin Q = \frac{{\frac{{50}}{{\sin 12^\circ }}.\sin 40^\circ }}{{\sin 90^\circ }}.\sin 52^\circ \simeq 121,81\) (m)
Vậy chiều cao của tháp hải đăng là khoảng 121,81 m
Đề thi giữa kì 2
Dục Thúy sơn
Đề thi giữa kì 2
Chủ đề 9: Bảo vệ cảnh quan thiên nhiên và môi trường tự nhiên
Chủ đề 4. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10