Toán 7 tập 2 - Cánh diều

Giải bài 3 trang 96 SGK Toán 7 tập 2 - Cánh diều

Đề bài

Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của cạnh huyền BC. Chứng minh tam giác MAB vuông cân.

 

 

Phương pháp giải - Xem chi tiết

Ta chứng minh tam giác MAB vuông cân bằng cách chứng minh trong tam giác có một góc vuông tại một đỉnh và có cặp cạnh bằng nhau xuất phát từ đỉnh đó.

 

 

Lời giải chi tiết

Tam giác ABC vuông cân tại A nên \(\widehat A = 90^\circ ;\widehat B = \widehat C; AB = AC\).

Tổng ba góc trong một tam giác bằng 180° nên \(\widehat B = \widehat C = 90:2 = 45^\circ \).

Xét tam giác ABM và tam giác ACM có:

AB = AC

AM chung

BM = CM

\(\Rightarrow \Delta ABM = \Delta ACM\) (c.c.c)

\(\Rightarrow \widehat {BAM} = \widehat {CAM}\) (2 góc tương ứng)

Mà \(\widehat {BAM} + \widehat {CAM}=\widehat{BAC}=90^0\)

\(\Rightarrow \widehat {BAM} = \widehat {CAM} = 90:2 = 45^\circ \).

Xét tam giác MAB: \(\widehat {MBA} = \widehat {BAM} = 45^\circ  \Rightarrow \widehat {BMA} = 90^\circ ;MB = MA\).

Vậy tam giác MAB vuông cân tại M.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved