Trả lời câu hỏi 30 - Mục câu hỏi trắc nghiệm trang 100

1. Nội dung câu hỏi

Cho hình chóp \(S.ABCD\) có \(AC\) cắt \(BD\) tại \(O\). Gọi \(\alpha \), \(\beta \) lần lượt là số đo của các góc nhị diện \(\left[ {A,SO,B} \right]\) và \(\left[ {B,SO,C} \right]\). Tính \(\alpha  + \beta \).


2. Phương pháp giải

Gọi \(P\) là hình chiếu của \(A\) trên \(SO\). Trên \(\left( {SAC} \right)\), gọi \(M\) là giao điểm của \(SC\) và \(AP\). Trên \(\left( {SBD} \right)\), kẻ \(NP \bot SO\) với \(N \in SB\). Chứng minh được \(\widehat {APN}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,SO,B} \right]\) và \(\widehat {NPM}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {B,SO,C} \right]\), từ đó tính được \(\alpha  + \beta \).

 

3. Lời giải chi tiết

Gọi \(P\) là hình chiếu của \(A\) trên \(SO\). Trên \(\left( {SAC} \right)\), gọi \(M\) là giao điểm của \(SC\) và \(AP\). Trên \(\left( {SBD} \right)\), kẻ \(NP \bot SO\) với \(N \in SB\).

Dễ thấy rằng 4 điểm \(A\), \(P\), \(M\), \(N\) đồng phẳng.

Vì \(AP \bot SO\), \(NP \bot SO\) nên góc \(\widehat {APN}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,SO,B} \right]\), tức là \(\alpha  = \widehat {APN}\).

Chứng minh tương tự, ta có \(\beta  = \widehat {NPM}\)

Suy ra \(\alpha  + \beta  = \widehat {APN} + \widehat {NPM} = \widehat {APM}\). Mặt khác, do \(A\), \(P\), \(M\) thẳng hàng, nên ta có \(\widehat {APM} = {180^o}\).

Như vậy \(\alpha  + \beta  = {180^o}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved