PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2

Bài 30 trang 11 SBT toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Giải các hệ phương trình sau theo hai cách (cách thứ nhất: đưa hệ phương trình về dạng

\(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x + b'y = c'} \cr} } \right.\);

cách thứ hai: đặt ẩn phụ, chẳng hạn \(3x – 2 = s, 3y + 2 = t)\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

\(\left\{ {\matrix{
{2\left( {3x - 2} \right) - 4 = 5\left( {3y + 2} \right)} \cr 
{4\left( {3x - 2} \right) + 7\left( {3y + 2} \right) = - 2} \cr} } \right.\)

Phương pháp giải:

Sử dụng:

- Giải hệ phương trình bằng phương pháp cộng đại số

- Cách giải hệ phương trình bằng phương pháp đặt ẩn số phụ

+Bước 1: Đặt điều kiện để hệ có nghĩa (nếu cần)

+Bước 2: Đặt ẩn phụ và điều kiện của ẩn phụ

+Bước 3: Giải hệ theo các ẩn phụ đã đặt (sử dụng phương pháp cộng đại số)

+Bước 4: Trở lại ẩn ban đầu để tìm nghiệm của hệ.

Lời giải chi tiết:

Cách \(1\):

\(\eqalign{
& \left\{ {\matrix{
{2\left( {3x - 2} \right) - 4 = 5\left( {3y + 2} \right)} \cr 
{4\left( {3x - 2} \right) + 7\left( {3y + 2} \right) = - 2} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{6x - 4 - 4 = 15y + 10} \cr 
{12x - 8 + 21y + 14 = - 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{6x - 15y = 18} \cr 
{12x + 21y = - 8} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{12x - 30y = 36} \cr 
{12x + 21y = - 8} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{6x - 15y = 18} \cr 
{51y = - 44} \cr
} } \right.\cr& \Leftrightarrow \left\{ {\matrix{
{2x - 5y = 6} \cr 
{y = \displaystyle - {{44} \over {51}}} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{2x  = 6+5y} \cr 
{y = \displaystyle - {{44} \over {51}}} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{2x = 6 -  \displaystyle{{220} \over {51}}} \cr 
{y =  \displaystyle- {{44} \over {51}}} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{2x =  \displaystyle{{86} \over {51}}} \cr 
{y =  \displaystyle- {{44} \over {51}}} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x =  \displaystyle{{43} \over {51}}} \cr 
{y = \displaystyle - {{44} \over {51}}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) =  \displaystyle \left( {{{43} \over {51}}; - {{44} \over {51}}} \right)\)

Cách \(2\):  Đặt \(3x – 2 = s, 3y + 2 = t\)

Khi đó hệ phương trình đã cho trở thành:

\(\eqalign{
& \left\{ {\matrix{
{2s - 4 = 5t} \cr 
{4s + 7t = - 2} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{2s - 5t = 4} \cr 
{4s + 7t = - 2} \cr
} } \right.\cr& \Leftrightarrow \left\{ {\matrix{
{4s - 10t = 8} \cr 
{4s + 7t = - 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{17t = - 10} \cr 
{2s - 5t = 4} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{t = \displaystyle  - {{10} \over {17}}} \cr 
{2s - 5t = 4} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{t = \displaystyle - {{10} \over {17}}} \cr 
{2s -  \displaystyle 5.\left( { - {{10} \over {17}}} \right) = 4} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{t = \displaystyle - {{10} \over {17}}} \cr 
{2s = 4 -  \displaystyle {{50} \over {17}}} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{t =  \displaystyle - {{10} \over {17}}} \cr 
{s =  \displaystyle {9 \over {17}}} \cr} } \right. \cr} \)

Suy ra:

\(\eqalign{
& \left\{ {\matrix{
{3x - 2 =  \displaystyle{9 \over {17}}} \cr 
{3y + 2 =  \displaystyle- {{10} \over {17}}} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{3x = 2 +  \displaystyle{9 \over {17}}} \cr 
{3y = \displaystyle - {{10} \over {17}} - 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3x =  \displaystyle{{43} \over {17}}} \cr 
{3y =  \displaystyle- {{44} \over {17}}} \cr
} } \right.\cr& \Leftrightarrow \left\{ {\matrix{
{x =  \displaystyle{{43} \over {51}}} \cr 
{y =  \displaystyle - {{44} \over {51}}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) =  \displaystyle \left( {{{43} \over {51}}; - {{44} \over {51}}} \right)\)

LG b

LG b

\(\left\{ {\matrix{
{3\left( {x + y} \right) + 5\left( {x - y} \right) = 12} \cr 
{ - 5\left( {x + y} \right) + 2\left( {x - y} \right) = 11} \cr} } \right.\)

Phương pháp giải:

Sử dụng:

- Giải hệ phương trình bằng phương pháp cộng đại số

- Cách giải hệ phương trình bằng phương pháp đặt ẩn số phụ

+Bước 1: Đặt điều kiện để hệ có nghĩa (nếu cần)

+Bước 2: Đặt ẩn phụ và điều kiện của ẩn phụ

+Bước 3: Giải hệ theo các ẩn phụ đã đặt (sử dụng phương pháp cộng đại số)

+Bước 4: Trở lại ẩn ban đầu để tìm nghiệm của hệ.

Lời giải chi tiết:

Cách \(1\):

\(\eqalign{
& \left\{ {\matrix{
{3\left( {x + y} \right) + 5\left( {x - y} \right) = 12} \cr 
{ - 5\left( {x + y} \right) + 2\left( {x - y} \right) = 11} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3x + 3y + 5x - 5y = 12} \cr 
{ - 5x - 5y + 2x - 2y = 11} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{8x - 2y = 12} \cr 
{ - 3x - 7y = 11} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{4x - y = 6} \cr 
{3x + 7y = - 11} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{12x - 3y = 18} \cr 
{12x + 28y = - 44} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{31y = - 62} \cr 
{4x - y = 6} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - 2} \cr 
{4x + 2 = 6} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{y = - 2} \cr 
{x = 1} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) =  (1; -2).\)

Cách \(2\): Đặt \(x + y = s; x – y = t\)  

Khi đó hệ phương trình đã cho trở thành:

\(\eqalign{
& \left\{ {\matrix{
{3s + 5t = 12} \cr 
{ - 5s + 2t = 11} \cr
} } \right. \cr&\Leftrightarrow \left\{ {\matrix{
{15s + 25t = 60} \cr 
{ - 15s + 6t = 33} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{31t = 93} \cr 
{ - 5s + 2t = 11} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{t = 3} \cr 
{ - 5s + 2.3 = 11} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{t = 3} \cr 
{s = - 1} \cr} } \right. \cr} \)

Suy ra:

\(\eqalign{
& \left\{ {\matrix{
{x + y = - 1} \cr 
{x - y = 3} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x = 2} \cr 
{x - y = 3} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr 
{1 - y = 3} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr 
{y = - 2} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) =  (1; -2).\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved