Đề bài
Ở Hình 17 có ba điểm A, B, C thẳng hàng; AD và BE vuông góc với AB; AD = BC; DC = CE. Chứng minh:
a) ΔDAC = ΔCBE;
b) \(\widehat {DCE} = 90^\circ \).
Phương pháp giải - Xem chi tiết
- Xét các điều kiện về cạnh để chứng minh hai tam giác vuông DAC và CDE bằng nhau trong trường hợp cạnh huyền – cạnh góc vuông.
- Từ ΔDAC = ΔCBE suy ra \(\widehat D = \widehat {BCE}\). Tính được số đo góc BCE.
Lời giải chi tiết
a) Xét ∆DAC và ∆CBE có:
\(\widehat {CAD} = \widehat {EBC}\) (cùng bằng 90°),
CD = CE (giả thiết),
AD = BC (giả thiết).
Do đó ΔDAC = ΔCBE (cạnh huyền – cạnh góc vuông).
Vậy ΔDAC = ΔCBE.
b) Vì ΔDAC = ΔCBE (chứng minh câu a)
Suy ra \(\widehat {DCA} = \widehat {CEB}\) (cặp góc tương ứng).
Xét ΔCEB vuông tại B có: \(\widehat {CEB} + \widehat {ECB} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°).
Suy ra \(\widehat {DCA} + \widehat {ECB} = 90^\circ \)
Mặt khác \(\widehat {DCA} + \widehat {DCE} + \widehat {ECB} = 180^\circ \)
Suy ra \(\widehat {DCE} = 180^\circ - \left( {\widehat {DCA} + \widehat {ECB}} \right) = 180^\circ - 90^\circ = 90^\circ \)
Vậy \(\widehat {DCE} = 90^\circ .\)
Chương 4: Góc và đường thẳng song song
Unit 3. Animals' magic
Chương 3. Các hình khối trong thực tiễn
Unit 8. Festivals around the World
Unit 0. Welcome
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7