Đề bài
Ở Hình 17 có ba điểm A, B, C thẳng hàng; AD và BE vuông góc với AB; AD = BC; DC = CE. Chứng minh:
a) ΔDAC = ΔCBE;
b) \(\widehat {DCE} = 90^\circ \).
Phương pháp giải - Xem chi tiết
- Xét các điều kiện về cạnh để chứng minh hai tam giác vuông DAC và CDE bằng nhau trong trường hợp cạnh huyền – cạnh góc vuông.
- Từ ΔDAC = ΔCBE suy ra \(\widehat D = \widehat {BCE}\). Tính được số đo góc BCE.
Lời giải chi tiết
a) Xét ∆DAC và ∆CBE có:
\(\widehat {CAD} = \widehat {EBC}\) (cùng bằng 90°),
CD = CE (giả thiết),
AD = BC (giả thiết).
Do đó ΔDAC = ΔCBE (cạnh huyền – cạnh góc vuông).
Vậy ΔDAC = ΔCBE.
b) Vì ΔDAC = ΔCBE (chứng minh câu a)
Suy ra \(\widehat {DCA} = \widehat {CEB}\) (cặp góc tương ứng).
Xét ΔCEB vuông tại B có: \(\widehat {CEB} + \widehat {ECB} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°).
Suy ra \(\widehat {DCA} + \widehat {ECB} = 90^\circ \)
Mặt khác \(\widehat {DCA} + \widehat {DCE} + \widehat {ECB} = 180^\circ \)
Suy ra \(\widehat {DCE} = 180^\circ - \left( {\widehat {DCA} + \widehat {ECB}} \right) = 180^\circ - 90^\circ = 90^\circ \)
Vậy \(\widehat {DCE} = 90^\circ .\)
Presentation Skills
Bài 15: Bảo vệ di sản văn hóa
Bài 2. Thơ bốn chữ, năm chữ
Bài 7. Trí tuệ dân gian
Chương 10: Một số hình khối trong thực tiễn
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7