Bài 3.10 trang 165 SBT giải tích 12

Đề bài

Cho \(F'\left( x \right) = f\left( x \right),C\) là hằng số dương tùy ý. Khi đó \(\int {f\left( x \right)dx} \) bằng

A. \(F\left( x \right) + C\)                B. \(F\left( x \right) - C\)

C. \(F\left( x \right) + \ln C\)           D. \(F\left( {x + C} \right)\)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất nguyên hàm: Nếu \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) thì \(F\left( x \right) + C\) với \(C\) là một số thực tùy ý cũng là một nguyên hàm của \(f\left( x \right)\).

Lời giải chi tiết

Do \(C\) là một số dương tùy ý nên loại hai đáp án A, B (theo tính chất thì \(C\) là một số thực tùy ý).

Đáp án D loại vì không được cộng hằng số vào biến.

Đáp án C đúng vì nếu \(C > 0\) thì \(D = \ln C\) là một số thực tùy ý, thỏa mãn tính chất của nguyên hàm.

Chọn C.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved