Đề bài
Từ bãi biển Vũng Chùa, Quảng Bình, ta có thể ngắm được Đảo Yến. Hãy đề xuất một các xác định bề rộng của hòn đảo (theo chiều ta ngắm được).
Lời giải chi tiết
Bước 1:
Đánh dấu vị trí quan sát tại điểm A, chiều rộng của hòn đảo kí hiệu là đoạn BC.
Gọi H là hình chiếu của A trên BC.
Trên tia đối của tia AH, lấy điểm M, ghi lại khoảng cách AM = a.
Bước 2:
Tại A, quan sát để xác định các góc \(\widehat {BAC} = \alpha ,\;\widehat {HAC} = \beta \).
Tiếp tục quan sát tại M, xác định góc \(\widehat {HMC} = \gamma \).
Bước 3: Giải tam giác AMC, tính AC.
AM = a, \(\widehat {AMC} = \widehat {HMC} = \gamma \) và \(\widehat {MAC} = {180^o} - \beta \)
\( \Rightarrow \widehat {ACM} = {180^o} - \gamma - \left( {{{180}^o} - \beta } \right) = \beta - \gamma \)
Áp dụng định định lí sin trong tam giác AMC ta có:
\(\frac{{AC}}{{\sin AMC}} = \frac{{AM}}{{\sin ACM}} \Rightarrow AC = \sin \gamma .\frac{a}{{\sin \left( {\beta - \gamma } \right)}}\)
Bước 4:
\(\widehat {ABC} = {90^o} - \widehat {HAB} = {90^o} - (\alpha - \beta )\)
Áp dụng định lí sin cho tam giác ABC ta có:
\(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} \Rightarrow BC = \sin \alpha .\frac{{\sin \gamma .\frac{a}{{\sin \left( {\beta - \gamma } \right)}}}}{{\sin \left( {{{90}^o} - (\alpha - \beta )} \right)}}.\).
Toán 10 tập 2 - Cánh diều
Đề thi giữa kì 1
Chủ đề 4. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Bài 2. Nội dung cơ bản một số luật về quốc phòng và an ninh Việt Nam
Chương VI. Chuyển động tròn
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10