1. Nội dung câu hỏi
Thống kê số lần đi học muộn trong học kì của các bạn trong lớp, Nam thu được kết quả sau:
Tính các tứ phân vị của mẫu số liệu ghép nhóm và cho biết ý nghĩa của các kết quả thu được.
2. Phương pháp giải
Để tính tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu ghép nhóm trước hết ta xác định nhóm chứa \({Q_1}.\) Giả sử đó là nhóm thứ p: \(\left[ {{a_p};{a_{p + 1}}} \right)\).
Khi đó, \({Q_1} = {a_p} + \frac{{\frac{n}{4} - \left( {{m_1} + ... + {m_{p - 1}}} \right)}}{{{m_p}}}\left( {{a_{p + 1}} - {a_p}} \right)\), trong đó n là cỡ mẫu, với \(p = 1\) thì ta quy ước \({m_1} + ... + {m_{p - 1}} = 0\).
Để tính tứ phân vị thứ ba \({Q_3}\) của mẫu số liệu ghép nhóm trước hết ta xác định nhóm chứa \({Q_3}.\) Giả sử đó là nhóm thứ p: \(\left[ {{a_p};{a_{p + 1}}} \right)\).
Khi đó, \({Q_3} = {a_p} + \frac{{\frac{{3n}}{4} - \left( {{m_1} + ... + {m_{p - 1}}} \right)}}{{{m_p}}}\left( {{a_{p + 1}} - {a_p}} \right)\), trong đó n là cỡ mẫu, với \(p = 1\) thì ta quy ước \({m_1} + ... + {m_{p - 1}} = 0\)
Tứ phân vị thứ hai \({Q_2}\) chính là \({M_e}\).
3. Lời giải chi tiết
Ta có bảng số liệu ghép nhóm:
Cỡ mẫu \(n = 40\)
+ Tứ phân vị thứ nhất \({Q_1}\) là \(\frac{{{x_{10}} + {x_{11}}}}{2}\). Do \({x_{10}},{x_{11}}\) đều thuộc nhóm \(\left[ {0;3} \right)\) nên nhóm này chứa \({Q_1}\). Do đó, \(p = 1,{a_1} = 0,{m_1} = 23,{a_2} - {a_1} = 3\)
Suy ra: \({Q_1} = 0 + \frac{{\frac{{40}}{4} - 0}}{{23}}.3 = \frac{{30}}{{23}}\)
+ Tứ phân vị thứ ba \({Q_3}\) là \(\frac{{{x_{30}} + {x_{31}}}}{2}\). Do \({x_{30}},{x_{31}}\) đều thuộc nhóm \(\left[ {3;6} \right)\) nên nhóm này chứa \({Q_3}\). Do đó, \(p = 2,{a_2} = 3,{m_2} = 8,{m_1} = 233,{a_3} - {a_2} = 3\)
Suy ra: \({Q_3} = 3 + \frac{{\frac{{3.40}}{4} - 23}}{8}.3 = 5,625\).
+ Tứ phân vị \({Q_2}\) chính là trung vị \({M_e}\)
Nhóm chứa trung vị là \(\left[ {0;3} \right)\). Trung vị là: \({M_e} = 0 + \frac{{\frac{{40}}{2} - 0}}{{23}}\left( {3 - 0} \right) = \frac{{60}}{{23}}\)
Vậy \({Q_2} = \frac{{60}}{{23}}\).
Unit 6: On the go
Chương V. Giới thiệu chung về cơ khí động lực
Bài 3. Phòng chống tệ nạn xã hội ở VN trong thời kì hội nhập quốc tế
Chương 1. Cân bằng hóa học
Bài 10. Kĩ thuật sử dụng lựu đạn
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11