SBT TOÁN TẬP 1 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Bài 3.12 trang 39 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Đề bài

Một cây cổ thụ mạc thẳng đứng bên lề một con dốc có độ dốc \({10^ \circ }\) so với phương nằm ngang. Từ một điểm dưới chân dốc, cách gốc cây 31 m người ta nhìn đỉnh ngọn cây dưới một góc \({40^ \circ }\) so với phương nằm ngang. Hãy tính chiều cao của cây.

Phương pháp giải - Xem chi tiết

- Tính \(\widehat {BAC}\) và \(\widehat {ACB}\)

- Áp dụng định lý sin, tính cạnh \(BC:\frac{{BC}}{{\sin BAC}} = \frac{{AB}}{{\sin ACB}}\)

Lời giải chi tiết

 

Giả sử con dốc là AB, gốc cây đặt tại B, chiều cao cây cổ thụ là đoạn CB.

Khi đó ta có: \( \widehat {BAD} = {10^ \circ },\, \widehat {CAD} = {40^ \circ }\) và \(AB=31m\)

Xét \(\Delta ADC\) vuông tại \(D\) có: \(\widehat {ACB} = {90^ \circ } - \widehat {DAC} = {90^ \circ } - {40^ \circ } = {50^ \circ }.\)

Ta có: \(\widehat {CAB} = \widehat {DAC} - \widehat {DAB} = {40^ \circ } - {10^ \circ } = {30^ \circ }.\)

Chiều cao của cây là:

Áp dụng định lý sin, ta có:

\(\begin{array}{l}\frac{{BC}}{{\sin BAC}} = \frac{{AB}}{{\sin ACB}}\,\, \Rightarrow \,\,BC = \frac{{AB.\sin BAC}}{{\sin ACB}}\\ \Rightarrow \,\,BC = \frac{{31.\sin {{30}^ \circ }}}{{\sin {{50}^ \circ }}} \approx 20,23\,\,m\end{array}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved