SBT Toán 8 - Kết nối tri thức với cuộc sống tập 1

Câu hỏi 3.15 - Mục Bài tập trang 37

1. Nội dung câu hỏi

Chứng minh rằng nếu hai góc kề của mỗi cạnh của một tứ giác đều là hai góc bù nhau thì tứ giác đó là một hình bình hành.

 

2. Phương pháp giải

Sử dụng kiến thức dấu hiệu nhận biết hình bình hành để chứng minh: Tứ giác có mỗi cặp góc đối bằng nhau là hình bình hành.

 

3. Lời giải chi tiết

Xét tứ giác ABCD có tính chất hai góc kề mỗi cạnh là hai góc bù nhau.

Vì \(\widehat A + \widehat B = {180^0},\widehat B + \widehat C = {180^0}\) nên \(\widehat A = \widehat C\)

Vì \(\widehat B + \widehat C = {180^0},\widehat D + \widehat C = {180^0}\) nên \(\widehat B = \widehat D\)

Tứ giác ABCD có: \(\widehat A = \widehat C\), \(\widehat B = \widehat D\) nên tứ giác ABCD là hình bình hành.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved