SBT TOÁN TẬP 1 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Giải bài 3.15 trang 39 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Đề bài

Cho tam giác \(ABC\) có các góc thỏa mãn \(\frac{{\sin A}}{1} = \frac{{\sin B}}{2} = \frac{{\sin C}}{{\sqrt 3 }}.\) Tính số đo các góc của tam giác.

Phương pháp giải - Xem chi tiết

- Áp dụng định lý sin để tìm \(AB,\,\,AC,\,\,BC.\)

- Áp dụng định lý cosin để tính các góc \(A,\,\,B,\,\,C.\)

Lời giải chi tiết

Áp dụng định lý sin cho \(\Delta ABC\) có \(\frac{{\sin A}}{{BC}} = \frac{{\sin B}}{{AC}} = \frac{{\sin C}}{{AB}}\)

Mặt khác \(\frac{{\sin A}}{1} = \frac{{\sin B}}{2} = \frac{{\sin C}}{{\sqrt 3 }}.\)

Nên \(BC:AC:AB = 1:2:\sqrt 3 \)

Chọn \(BC = 1,\,\,AC = 2,\,\,AB = \sqrt 3 .\)

Áp dụng định lý cosin, ta có:

\(\left\{ {\begin{array}{*{20}{c}}{\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}}\\{\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}}}\\{\widehat C = {{180}^ \circ } - \widehat A - \widehat B}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\cos A = \frac{{3 + 4 - 1}}{{2.2\sqrt 3 }} = \frac{{\sqrt 3 }}{2}}\\{\cos B = \frac{{3 + 1 - 4}}{{2.\sqrt 3 }} = 0}\\{\widehat C = {{180}^ \circ } - \widehat A - \widehat B}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\widehat A = {{30}^0}}\\{\widehat B = {{90}^ \circ }}\\{\widehat C = {{60}^ \circ }}\end{array}} \right.} \right.} \right.\)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved