1. Nội dung câu hỏi
Cho hình chữ nhật \(ABCD\) có hai cạnh kề không bằng nhau. Tia phân giác của các góc \(A\) và \(B\) cắt nhau tại \(E\). Tia phân giác của các góc \(C\) và \(D\) cắt nhau tại \(F\). Gọi \(G\) là giao điểm của \(AE\) và \(DF\), \(H\) là giao điểm của \(BE\) và \(CF\). Chứng minh:
a) \(GH//CD\)
b) Tứ giác \(GFHE\) là hình vuông
2. Phương pháp giải
Dựa vào dấu hiệu nhận biết của hình vuông:
- Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông
- Hình chữ nhật có hai đường chéo là đường phân giác của một góc là hình vuông
3. Lời giải chi tiết
a) Do \(ABCD\) là hình chữ nhật nên \(\widehat {DAB} = \widehat {ABC} = \widehat {BCD} = \widehat {CDA} = 90^\circ \)
Mà \(AE,BE,CF,DF\) lần lượt là các tia phân giác của các góc \(DAB,ABC,BCD,CDA\) suy ra \(\widehat {DAE} = \widehat {EAB} = \widehat {ABE} = \widehat {EBC} = \widehat {BCF} = \widehat {FCD} = \widehat {CDF} = \widehat {FDA} = 45^\circ \)
Do đó, các tam giác \(EAB,FCD,GAD,HBC\) đều là tam giác vuông cân.
\(\Delta GAD = \Delta HBC\) (g.c.g). Suy ra \(GD = HC\). Mà \(FD = FC\), suy ra \(FG = FH\).
Do đó, tam giác \(FGH\) vuông cân tại \(F\). Suy ra \(\widehat {FGH} = 45^\circ \).
Ta có: \(\widehat {FGH} = \widehat {CDF} = 45^\circ \) và \(\widehat {FGH},\widehat {CDF}\) nằm ở vị trí đồng vị nên \(GH//CD\).
b) \(\widehat {EGF} = \widehat {AGD} = 90^\circ \) (hai góc đối đỉnh)
Tứ giác \(GFHE\) là hình chữ nhật.
Hình chữ nhật \(GFHE\) có \(FG = FH\) nên \(GFHE\) là hình vuông.
Âm nhạc
Văn tự sự
Chương 4. Oxi - không khí
ÔN TẬP CUỐI NĂM - TÀI LIỆU DẠY-HỌC TOÁN 8
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương 5 - Hóa học 8
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8