Đề bài
Lập phương trình mặt phẳng \((\alpha )\) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng \((\beta )\) : x + 2y – z = 0 .
Phương pháp giải - Xem chi tiết
Mặt phẳng đi qua hai điểm \(A,B\) và vuông góc \(\left( \beta \right)\) thì có VTPT là \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {{n_{\left( \beta \right)}}} } \right]\)
Lời giải chi tiết
Mặt phẳng \((\alpha )\) đi qua hai điểm A, B và vuông góc với mặt phẳng \((\beta )\):
x + 2y – z = 0.
Vậy hai vecto có giá song song hoặc nằm trên \((\alpha )\) là \(\overrightarrow {AB} = (2;2;1)\) và \(\overrightarrow {{n_\beta }} = (1;2; - 1)\)
Suy ra \((\alpha )\) có vecto pháp tuyến là: \(\overrightarrow {{n_\alpha }} =\left[ {\overrightarrow {AB} ,\overrightarrow {{n_\beta }} } \right] = ( - 4;3;2)\)
Vậy phương trình của \((\alpha )\) là: -4x + 3(y – 1) + 2z = 0 hay 4x – 3y – 2z + 3 = 0.
Đề kiểm tra 15 phút - Chương 1 – Hóa học 12
Bài 10. Pháp luật với hòa bình và sự phát triển tiến bộ của nhân loại
Bài 9. Thiên nhiên nhiệt đới ẩm gió mùa
Unit 9. Deserts
Tải 15 đề kiểm tra 15 phút - Chương 7 – Hóa học 12