Chương 3: Góc và đường thẳng song song

Bài 3.21 trang 42

Đề bài

Cho đường thẳng xx’, điểm A thuộc xx’. Trên tia Ax’ lấy điểm B (điểm B khác điểm A). Vẽ tia By, trên tia By lấy điểm M. Hai điểm N và P thoả mãn \(\widehat {NMA} = \widehat {MAB};\widehat {PMy} = \widehat {MBx'}\) (H.3.21). Giải thích tại sao ba điểm N, M, P thẳng hàng.

Phương pháp giải - Xem chi tiết

- Chứng minh: \(MN\parallel xx'\),\(MP\parallel xx'\)

- Áp dụng tiên đề Euclid.

Lời giải chi tiết

Ta có: \(\widehat {NMA} = \widehat {MAB}\), mà hai góc này ở vị trí so le trong, suy ra \(MN\parallel xx'\)

            \(\widehat {PMy} = \widehat {MBx'}\), mà hai góc này ở vị trí đồng vị, suy ra \(MP\parallel xx'\)

Theo tiên đề Euclid, qua điểm M chỉ có một đường thẳng song song với xx’.

Do đó hai đường thẳng MN và MP trùng nhau

Suy ra N, M, P thẳng hàng 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved