Đề bài
Chứng minh rằng đồ thị của hàm số \(y = a{x^2} + bx + c\;(a \ne 0)\) là một parabol có tiêu điểm là \(F(\frac{{ - b}}{{2a}};\frac{{1 - \Delta }}{{4a}})\) và đường chuẩn là \(y = - \frac{{1 + \Delta }}{{4a}}\), trong đó \(\Delta = {b^2} - 4ac.\)
Lời giải chi tiết
Lấy \(M(x;a{x^2} + bx + c)\) bất kì thuộc đồ thị hàm số.
Để đồ thị của hàm số \(y = a{x^2} + bx + c\;(a \ne 0)\) là một parabol có tiêu điểm là \(F(\frac{{ - b}}{{2a}};\frac{{1 - \Delta }}{{4a}})\) và đường chuẩn là \(y = - \frac{{1 + \Delta }}{{4a}}\) thì \(\frac{{MF}}{{d(M,\Delta )}} = e = 1\)
Ta có: \(MF = \sqrt {{{\left( {x + \frac{b}{{2a}}} \right)}^2} + {{\left( {a{x^2} + bx + c - \frac{{1 - {b^2} + 4ac}}{{4a}}} \right)}^2}} \)
\(\begin{array}{l} \Rightarrow M{F^2} = {\left( {x + \frac{b}{{2a}}} \right)^2} + {\left( {a{x^2} + bx - \frac{{1 - {b^2}}}{{4a}}} \right)^2}\\ \Rightarrow 16{a^2}M{F^2} = 4{\left( {2ax + b} \right)^2} + {\left( {4{a^2}{x^2} + 4abx - 1 + {b^2}} \right)^2}\\ = 4{\left( {2ax + b} \right)^2} + {\left( {{{\left( {2ax + b} \right)}^2} - 1} \right)^2} = {\left( {{{\left( {2ax + b} \right)}^2} + 1} \right)^2}\end{array}\)
\(\begin{array}{l} + )\;d(M,\Delta ) = \left| {a{x^2} + bx + c + \frac{{1 + {b^2} - 4ac}}{{4a}}} \right| = \left| {a{x^2} + bx + \frac{{1 + {b^2}}}{{4a}}} \right|\\ \Rightarrow {d^2}(M,\Delta ) = {\left( {a{x^2} + bx + \frac{{1 + {b^2}}}{{4a}}} \right)^2}\\ \Rightarrow 16{a^2}d(M,\Delta ) = {\left( {4{a^2}{x^2} + 4abx + 1 + {b^2}} \right)^2} = {\left( {{{\left( {2ax + b} \right)}^2} + 1} \right)^2}\end{array}\)
\( \Rightarrow \frac{{MF}}{{d(M,\Delta )}} = e = 1\) (đpcm)
Chủ đề 6. Một số nền văn minh trên đất nước Việt Nam (trước 1858)
Đề kiểm tra giữa học kì 2
Đề thi học kì 2
Chủ đề 6: Hướng nghiệp với tin học
Đề thi giữa kì 1
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10