SBT Toán 11 - Kết nối tri thức với cuộc sống tập 1

Câu hỏi 3.24 - Mục Bài tập trang 52

1. Nội dung câu hỏi

Số nguyện vọng đăng kí vào đại học của các bạn trong lớp được thống kê trong bảng sau:

 

a) Trung bình một bạn trong lớp đăng kí bao nhiêu nguyện vọng.

b) Tìm các tứ phân vị của mẫu số liệu


2. Phương pháp giải

Số trung bình của mẫu số liệu ghép mẫu là: \(\overline x  = \frac{{{m_1}{x_1} + ... + {m_k}{x_k}}}{n}\), trong đó \(n = {m_1} + ... + {m_k}\) là tổng số quan sát (còn gọi là cỡ mẫu) và \({x_i} = \frac{{{a_i} + {a_{i + 1}}}}{2}\) gọi là giá trị đại diện của nhóm \(\left[ {{a_i};{a_{i + 1}}} \right]\).

Để tính trung vị \({M_e}\) của mẫu số liệu ghép nhóm ta làm như sau:

Bước 1: Xác định nhóm chứa trung vị. Giả sử đó là nhóm thứ j: \(\left[ {{a_j};{a_{j + 1}}} \right)\)

Bước 2: Trung vị là: \({M_e} = {a_j} + \frac{{\frac{n}{2} - \left( {{m_1} + ... + {m_{j - 1}}} \right)}}{{{m_j}}}\left( {{a_{j + 1}} - {a_j}} \right)\)

Trong đó, n là cỡ mẫu. Với \(j = 1\) ta quy ước \({m_1} + ... + {m_{j - 1}} = 0\). Trung vị chính là tứ phân vị thứ hai \({Q_2}.\) Trung vị của mẫu số liệu ghép nhóm xấp xỉ cho trung vị của mẫu số liệu gốc, nó chia mẫu số liệu thành 2 phần, mỗi phần chứa 50% giá trị.

Để tính tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu ghép nhóm trước hết ta xác định nhóm chứa \({Q_1}.\) Giả sử đó là nhóm thứ p: \(\left[ {{a_p};{a_{p + 1}}} \right)\).

Khi đó, \({Q_1} = {a_p} + \frac{{\frac{n}{4} - \left( {{m_1} + ... + {m_{p - 1}}} \right)}}{{{m_p}}}\left( {{a_{p + 1}} - {a_p}} \right)\), trong đó n là cỡ mẫu, với \(p = 1\) thì ta quy ước \({m_1} + ... + {m_{p - 1}} = 0\).

Để tính tứ phân vị thứ ba \({Q_3}\) của mẫu số liệu ghép nhóm trước hết ta xác định nhóm chứa \({Q_3}.\) Giả sử đó là nhóm thứ p: \(\left[ {{a_p};{a_{p + 1}}} \right)\).

Khi đó, \({Q_3} = {a_p} + \frac{{\frac{{3n}}{4} - \left( {{m_1} + ... + {m_{p - 1}}} \right)}}{{{m_p}}}\left( {{a_{p + 1}} - {a_p}} \right)\), trong đó n là cỡ mẫu, với \(p = 1\) thì ta quy ước \({m_1} + ... + {m_{p - 1}} = 0\).

 

3. Lời giải chi tiết 

a) Trong mỗi khoảng số nguyên vọng của các bạn trong lớp, giá trị đại diện chính là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

Số trung bình của mẫu số liệu là

\(\bar x = \frac{{5.2 + 18.5 + 13.8 + 7.11}}{{43}} \approx 6,73.\)

b) Hiệu chỉnh mẫu số liệu, ta được bảng thống kê sau

 

Nhóm chứa tứ phân vị thứ nhất là [3,5; 6,5).

\({Q_1} = 3,5 + \frac{{\frac{{53}}{4} - 5}}{{18}}\left( {6,5 - 3,5} \right) = 4,875\).

Nhóm chứa tứ phân vị thứ hai là [6,5; 9,5)

\({Q_2} = 6,5 + \frac{{\frac{{53}}{2} - (5 + 18)}}{{13}}\left( {9,5 - 6,5} \right) \approx 7,3\).

Nhóm chứa tứ phân vị thứ ba là [9,5; 12,5)

\({Q_3} = 9,5 + \frac{{\frac{{3.53}}{4} - \left( {5 + 18 + 13} \right)}}{{17}}\left( {12,5 - 9,5} \right) \approx 10,2\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved