Đề bài
Tam giác \(ABC\) có \(a = 14,\,\,b = 9\) và \({m_a} = 8.\) Độ dài đường cao \({h_a}\) bằng:
A. \(\frac{{24\sqrt 5 }}{7}.\)
B. \(\frac{{12\sqrt 5 }}{7}.\)
C. \(12\sqrt 5 .\)
D. \(24\sqrt 5 .\)
Phương pháp giải - Xem chi tiết
- Tính nửa chu vi \(\Delta AMC\): \(p = \frac{{\frac{a}{2} + {m_a} + b}}{2}\)
- Tính diện tích \(\Delta AMC\): \({S_{\Delta AMC}} = \sqrt {p\left( {p - \frac{a}{2}} \right)\left( {p - {m_a}} \right)\left( {p - b} \right)} \)
- Tính đường cao \({h_a}\) dựa vào công thức \({S_{\Delta AMC}} = \frac{1}{2}.\frac{a}{2}.{h_a}\)
Lời giải chi tiết
Nửa chu vi \(\Delta AMC\) là: \(p = \frac{{\frac{a}{2} + {m_a} + b}}{2} = \frac{{7 + 8 + 9}}{2} = 12.\)
Diện tích \(\Delta AMC\) là:
\({S_{\Delta AMC}} = \sqrt {p\left( {p - \frac{a}{2}} \right)\left( {p - {m_a}} \right)\left( {p - b} \right)} = \sqrt {12\left( {12 - 7} \right)\left( {12 - 8} \right)\left( {12 - 9} \right)} = 12\sqrt 5 .\)
Độ dài đường cao hạ từ đỉnh A là:
\({h_a} = \frac{{4{S_{\Delta AMC}}}}{a} = \frac{{4.12\sqrt 5 }}{{14}} = \frac{{24\sqrt 5 }}{7}.\)
Chọn A.
Chương 5. Năng lượng hóa học
Buổi học cuối cùng
Chương IV. Văn minh Đông Nam Á cổ-trung đại
MỞ ĐẦU. GIỚI THIỆU MỤC ĐÍCH HỌC TẬP MÔN VẬT LÍ
Unit 2: Entertainment and Leisure
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10