Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Cho đường tròn \((O ; 25cm),\) điểm \(C\) cách \(O\) là \(7cm.\) Có bao nhiêu dây đi qua \(C\) có độ dài là một số nguyên xentimét\(?\)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức:
+) Trong các dây của một đường tròn, dây lớn nhất là đường kính.
+) Đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
Lời giải chi tiết
Dây lớn nhất đi qua \(C\) là đường kính \(EF = 50cm.\)
Dây nhỏ nhất đi qua \(C\) là dây \(AB\) vuông góc với \(OC\) tại \(C,\) \(AB = 48cm.\)
\((\)Vì tam giác \(OAC\) vuông tại \(C,\) theo định lý Pytago ta có \(AC=\sqrt{OA^2-OC^2}\)\(=\sqrt{25^2-7^2}=24cm,\) mà \(OC\bot AB\) tại C nên C là trung điểm AB (quan hệ giữa đường kính và dây cung), suy ra \(AB=2AC=2.24=48cm)\)
Có hai dây đi qua \(C\) có độ dài \(49cm\) \((\) là dây \(GH\) và \(IK\) đối xứng nhau qua \(EF\), hai dây đối xứng qua một đường thẳng thì có độ dài bằng nhau)
Có tất cả \(4\) dây đi qua \(C\) có độ dài là một số nguyên xentimét.
Đề thi vào 10 môn Toán Vĩnh Phúc
Đề thi học kì 2
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Địa lí lớp 9
Câu hỏi tự luyện Sử 9
ĐỊA LÍ DÂN CƯ