Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Bài tập ôn chương I. Tứ giác
Đề bài
Hình thang cân \(ABCD\) \((AB // CD)\) có \(\widehat C=60^0,\) \(DB\) là tia phân giác của góc \(D.\) Tính các cạnh của hình thang, biết chu vi hình thang bằng \(20cm.\)
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức:
+) Trong hình thang cân, hai cạnh bên bằng nhau.
+) Nếu một hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau, hai cạnh đáy bằng nhau.
+) Tam giác có hai góc \(60^0\) thì tam giác đó là tam giác đều.
Lời giải chi tiết
Hình thang \(ABCD\) cân có \(AB // CD\)
\( \Rightarrow \widehat D = \widehat C = {60^0}\)
\(DB\) là tia phân giác của góc \(D\)
\( \Rightarrow \widehat {D_1} = \widehat {D_2}=\dfrac{1}{2}\widehat D=30^0\)
Mà \(AB//CD\) nên \(\widehat {B_1} = \widehat {D_2}\) (hai góc so le trong)
Suy ra: \(\widehat {D_1} = \widehat {B_1}\)
\(⇒ ∆ ABD\) cân tại \(A\) \(⇒ AB = AD\;\;\; (1)\)
Từ \(B\) kẻ đường thẳng song song với \(AD\) cắt \(CD\) tại \(E\)
Hình thang \(ABED\) (do \(AB//DE)\) có hai cạnh bên song song nên \(AB = ED,\) \(AD= BE\) \((2)\)
Lại có \(AB//CD\) nên \(\widehat {BEC} = \widehat {ADC}=60^0\) (hai góc đồng vị )
Suy ra: \(\widehat {BEC} = \widehat C = {60^0}\)
\(⇒∆ BEC\) đều \(⇒ EC = BC \;\;\;(3)\)
Vì ABCD là hình thang cân nên \(AD = BC\) (tính chất) \((4)\)
Từ \((1),\) \((2),\) \((3)\) và \((4)\) \(⇒ AB = BC = AD = ED = EC\)
Chu vi hình thang \(ABCD\) bằng:
\(AB + BC + CD + AD \)\(= AB + BC + EC +ED +AD\)\( = 5AB\)
\(⇒AB = BC = AD = 20:5 = 4\;(cm)\)
\(CD = CE + DE = 2 AB \)\(= 2.4 = 8 \;\;(cm)\)
Unit 9: Phones Used to Be Much Bigger
CHƯƠNG 1: CƠ HỌC
PHẦN HAI. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI (PHẦN TỪ NĂM 1917 ĐẾN NĂM 1945)
Bài 10: Tự lập
Tải 10 đề kiểm tra 15 phút - Chương 1
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8