Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Đề bài
Cho tam giác \(ABC\) có cạnh \(BC\) cố định và \(\widehat A = \alpha \) không đổi. Tìm quỹ tích giao điểm của ba đường phân giác trong của tam giác đó.
Phương pháp giải - Xem chi tiết
Muốn chứng minh quỹ tích (tập hợp) các điểm \(M\) thỏa mãn tính chất \(\tau\) là một hình \({\rm H}\) nào đó, ta phải chứng minh hai phần:
Phần thuận: Mọi điểm có tính chất \(\tau\) đều thuộc hình \(\rm H.\)
Phần đảo: Mọi điểm thuộc hình \(\rm H\) đều có tính chất \(\tau.\)
Kết luận: Quỹ tích (hay tập hợp) các điểm \(M\) có tính chất \(\tau\) là hình \(\rm H.\)
(Thông thường với bài toán "Tìm quỹ tích..." ta nên dự đoán hình \(\rm H\) trước khi chứng minh: Tập hợp các điểm \(M\) tạo với hai mút của đoạn thẳng \(AB\) cho trước một góc \(AMB\) bằng \(\alpha\) \((\alpha\) không đổi \()\) là hai cung tròn đối xứng với nhau qua \(AB\) (gọi là cung chứa góc \(\alpha\) vẽ trên đoạn \(AB\))).
Lời giải chi tiết
Chứng minh thuận:
Gọi \(I\) là giao điểm \(3\) đường phân giác trong của \(∆ABC\)
\(\widehat {IBC} =\displaystyle {{\widehat B} \over 2};\) \(\widehat {ICB} = \displaystyle {{\widehat C} \over 2}\)
\( \Rightarrow \) \(\widehat {IBC} + \widehat {ICB} = \displaystyle {{\widehat B + \widehat C} \over 2}\) mà trong \(∆ABC\) ta có: \(\widehat B + \widehat C = 180^\circ - \widehat A = 180^\circ - \alpha \)
Suy ra: \(\widehat {IBC} + \widehat {ICB} =\displaystyle {{180^\circ - \alpha } \over 2}\)
Trong \(∆BIC\) ta có: \(\widehat {BIC} = 180^\circ - (\widehat {IBC} + \widehat {ICB})\)
Suy ra: \(\widehat {BIC} = \displaystyle 180^\circ - {{180^\circ - \alpha } \over 2}\)\( = \displaystyle {{360^\circ - 180^\circ + \alpha } \over 2}\)\( =\displaystyle 90^\circ + {\alpha \over 2}\)
Do \(\widehat Α=\alpha\) không đổi \( \Rightarrow \widehat {BIC} = 90^\circ + \displaystyle {\alpha \over 2}\) không đổi.
Vì \(I\) thay đổi tạo với \(2\) đầu đoạn \(BC\) cố định một góc bằng \(90^\circ + \displaystyle {\alpha \over 2}\) không đổi
Do đó, \(I\) nằm trên cung chứa góc \(90^\circ + \displaystyle {\alpha \over 2}\) vẽ trên \(BC.\)
Chứng minh đảo: Trên cung chứa góc \(90^\circ + \displaystyle {\alpha \over 2}\) lấy điểm \(I’ \) bất kỳ. Vẽ trên cùng nửa mặt phẳng bờ \(BC\) chứa điểm \(I’\) hai tai \(Bx\) và \(Cy\) sao cho \(BI’\) là phân giác của \(\widehat {CBx},CI'\) là phân giác của \(\widehat {BCy}\).
\(Bx\) cắt \(Cy\) tại \(A'.\)
Trong \(∆BI'C\) ta có: \(\widehat {BI'C} = 90^\circ + \displaystyle {\alpha \over 2}\)
\( \Rightarrow \widehat {I'BC} + \widehat {I'CB} = 180^\circ - \widehat {BI'C}\)\( =\displaystyle 180^\circ - \left( {90^\circ + {\alpha \over 2}} \right)\)\( = \displaystyle {{180^\circ - \alpha } \over 2}\)
\(\widehat {CBA'} = 2\widehat {I'BC};\widehat {BCA'} = 2\widehat {I'CB}\)
\( \Rightarrow \widehat {CBA'} + \widehat {BCA'} =\displaystyle 2.{{180^\circ - \alpha } \over 2} \)\(= 180^\circ - \alpha \)
Trong \(∆A'BC\) ta có:
\(\widehat {BA'C} = 180^\circ - (\widehat {CBA'} + \widehat {BCA'}) \)\(= 180^\circ - (180^\circ - \alpha ) = \alpha \)
Kết luận: Vậy quỹ tích giao điểm \(3\) đường phân giác trong \(∆ABC\) khi \(\widehat A = \alpha \) không đổi, \(BC\) cố định là \(2\) cung chứa góc \(90^\circ + \displaystyle {\alpha \over 2}\) vẽ trên \(BC.\)
Bài 6
CHƯƠNG IV. SỰ BẢO TOÀN VÀ CHUYỂN HÓA NĂNG LƯỢNG
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 9
CHƯƠNG 5. DẪN XUẤT CỦA HIDROCACBON - POLIME
Đề thi vào 10 môn Văn Thanh Hóa