Trả lời câu hỏi 33 - Mục câu hỏi trắc nghiệm trang 39

1. Nội dung câu hỏi

Để tính độ tuổi của mẫu vật bằng gỗ, người ta đo độ phóng xạ của \({}_6^{14}C\) có trong mẫu vật tại thời điểm \(t\)(năm) (so với thời điểm ban đầu \(t = 0\)), sau đó sử dụng công thức tính độ phóng xạ \(H = {H_0}{e^{ - \lambda t}}\) (đơn vị là Becquerel, kí hiệu Bq) với \({H_0}\) là độ phóng xạ ban đầu (tại thời điểm \(t = 0\)); \(\lambda  = \frac{{\ln 2}}{T}\) là hằng số phóng xạ, \(T = 5730\)(năm) (Nguồn: Vật lí 12 Nâng cao, NXBGD Việt Nam, 2014). Khảo sát một mẫu gỗ cổ, các nhà khoa học đo được độ phóng xạ là 0,215 Bq. Biết độ phóng xạ của mẫu gỗ tươi cùng loại là 0,250 Bq. Xác định độ tuổi của mẫu gỗ cổ đó (làm tròn kết quả đến hàng đơn vị).


2. Phương pháp giải

Sử dụng công thức tính độ phóng xạ \(H = {H_0}{e^{ - \lambda t}}\) để xác định độ tuổi của mẫu gỗ cổ.

 

3. Lời giải chi tiết

Theo đề bài: \(H = 0,215{\rm{ Bp}};{\rm{ }}{H_0} = 0,25{\rm{ Bp; }}T = 5730\)(năm).

Từ công thức: \(H = {H_0}{e^{ - \lambda t}} \Leftrightarrow {e^{ - \lambda t}} = \frac{H}{{{H_0}}} \Leftrightarrow  - \lambda t = \ln \left( {\frac{H}{{{H_0}}}} \right) \Leftrightarrow  - \frac{{\ln 2}}{T}.t = \ln \left( {\frac{H}{{{H_0}}}} \right)\)

\( \Leftrightarrow t =  - {\rm{l}}n\left( {\frac{H}{{{H_0}}}} \right).\frac{T}{{\ln 2}} =  - \ln \frac{{0,215}}{{0,25}}.\frac{{5730}}{{\ln 2}} \approx 1247\)(năm).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved