1. Nội dung câu hỏi
Tìm đạo hàm cấp hai mỗi hàm số sau:
a) \(f\left( x \right) = \frac{1}{{3x + 5}};\)
b) \(g\left( x \right) = {2^{x + 3{x^2}}}.\)
2. Phương pháp giải
Tính \(f'\left( x \right)\) rồi tính \(f''\left( x \right).\)
3. Lời giải chi tiết
a) \(f\left( x \right) = \frac{1}{{3x + 5}} \Rightarrow f'\left( x \right) = - \frac{3}{{{{\left( {3x + 5} \right)}^2}}} \Rightarrow f''\left( x \right) = - 3.\frac{{ - 2\left( {3x + 5} \right).3}}{{{{\left( {3x + 5} \right)}^4}}} = \frac{{18}}{{{{\left( {3x + 5} \right)}^3}}}.\)
b) \(g\left( x \right) = {2^{x + 3{x^2}}} \Rightarrow g'\left( x \right) = \left( {6x + 1} \right){2^{x + 3{x^2}}}\ln 2\)
\( \Rightarrow f''\left( x \right) = \ln 2.\left[ {{{6.2}^{x + 3{x^2}}} + \left( {6x + 1} \right).\left( {6x + 1} \right){2^{x + 3{x^2}}}\ln 2} \right] = \ln {2.2^{x + 3{x^2}}}\left[ {6 + {{\left( {6x + 1} \right)}^2}\ln 2} \right].\)
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam
CHƯƠNG 1: ĐIỆN TÍCH - ĐIỆN TRƯỜNG
SBT Toán 11 - Cánh Diều tập 1
B - ĐỊA LÍ KHU VỰC VÀ QUỐC GIA
Unit 5: Challenges
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11