HÌNH HỌC SBT - TOÁN 11

Bài 3.33 trang 160 SBT hình học 11

Đề bài

Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Chứng minh rằng khoảng cách từ các điểm A’, B, D; C, B’, D tới đường chéo AC’ bằng nhau. Tính khoảng cách đó.

Lời giải chi tiết

 

Điểm A cách đều ba đỉnh của tam giác đều A’BD vì ta có \(AB = A{\rm{D}} = AA' = a\), điểm C’ cũng cách đều ba đỉnh của tam giác đều đó vì ta có: 

\(C'B = C'D = C'A' = a\sqrt 2 \)

Vậy AC’ là trục của đường tròn ngoại tiếp tam giác A’BD, tức là đường thẳng AC’ vuông góc với mặt phẳng (A’BD) tại trọng tâm I của tam giác A’BD. Ta cần tìm khoảng cách A’I.

Ta có \(A'I = BI = DI = {2 \over 3}A'O\) với O là tâm của hình vuông ABCD

Ta lại có \(AO' = B{\rm{D}}{{\sqrt 3 } \over 2}\)

\( = a\sqrt 2 .{{\sqrt 3 } \over 2} = {{a\sqrt 6 } \over 2}\)

Vậy \(A'I = {2 \over 3}A'O = {2 \over 3}.{{a\sqrt 6 } \over 2} = {{a\sqrt 6 } \over 3}\)

Tương tự điểm C’ cách đều ba đỉnh của tam giác đều CB’D’, tính được khoảng cách từ C, B’, D’ tới đường chéo AC’.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved