HÌNH HỌC SBT - TOÁN 11

Bài 3.38 trang 160 SBT hình học 11

Đề bài

Tính khoảng cách giữa hai cạnh AB và CD của hình tứ diện ABCD biết rằng \(AC = BC = A{\rm{D}} = B{\rm{D}} = a\) và \(AB = p,C{\rm{D}} = q\).

Lời giải chi tiết

 

Gọi I và K lần lượt là trung điểm của AB và CD.

Ta có: \(\Delta ACD = \Delta BCD\left( {c - c - c} \right)\) nên \(AK = BK\) (hai đường trung tuyến tương ứng)

\( \Rightarrow \Delta ABK\) cân tại \(K\) có \(I\) là trung điểm \(AB\) nên \(KI \bot AB\).

Tương tự ta có \(IK \bot CD\) nên \(IK\) là đoạn vuông góc chung của \(AB,CD\).

Độ dài đoạn IK là khoảng cách cần tìm:

\(I{K^2} = B{K^2} - B{I^2} = B{K^2} - {{{p^2}} \over 4}\)

Mà \(B{K^2} = B{C^2} - C{K^2} = {a^2} - {{{q^2}} \over 4}\)

Vậy \(I{K^2} = {a^2} - {{{p^2} + {q^2}} \over 4}\)

Do đó \(IK = {1 \over 2}\sqrt {4{{\rm{a}}^2} - \left( {{p^2} + {q^2}} \right)} \)

Với điều kiện \(4{{\rm{a}}^2} - \left( {{p^2} + {q^2}} \right) > 0\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey

Chatbot GPT

timi-livechat
Đặt câu hỏi