PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 34 trang 108 SBT toán 9 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Hãy tìm \(\sin \alpha ,\cos \alpha \) (làm tròn đến chữ số thập phân thứ tư) nếu biết:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

\(tg\alpha  = \dfrac{1}{3}\)

Phương pháp giải:

Các tỉ số lượng giác của góc nhọn  (hình) được định nghĩa như sau:

 

 \(\sin \alpha  = \dfrac{{AB}}{{BC}};\cos \alpha  = \dfrac{{AC}}{{BC}};\)\(\tan \alpha  = \dfrac{{AB}}{{AC}};\cot \alpha  = \dfrac{{AC}}{{AB}}.\)  

Lời giải chi tiết:

Vì \(tg\alpha  = \dfrac{1}{3}\) nên có thể coi \(\alpha\) là góc nhọn của một tam giác vuông có các cạnh góc vuông là 1 và 3.

Suy ra cạnh huyền của tam giác vuông là: \(\sqrt {{1^2} + {3^2}}  = \sqrt {10}  \approx 3,1623\)

Vậy: \(\sin \alpha  = \dfrac{1}{{3,1623}} \approx 0,3162\); \(\cos \alpha  = \dfrac{3}{{3,1623}} \approx 0,9487\)

 

LG b

LG b

\(\cot g\alpha  = \dfrac{3}{4}.\)  

Phương pháp giải:

Các tỉ số lượng giác của góc nhọn  (hình) được định nghĩa như sau:

 

 \(\sin \alpha  = \dfrac{{AB}}{{BC}};\cos \alpha  = \dfrac{{AC}}{{BC}};\)\(\tan \alpha  = \dfrac{{AB}}{{AC}};\cot \alpha  = \dfrac{{AC}}{{AB}}.\)  

Lời giải chi tiết:

 Vì \(cotg \alpha = \dfrac{3}{4}\) nên có thể coi \(\alpha\) là góc nhọn của một tam giác vuông có các cạnh góc vuông là 3 và 4.

Suy ra cạnh huyền của tam giác vuông là: \(\sqrt {{3^2} + {4^2}}  = \sqrt {25}  = 5\)

Vậy: \(\sin \alpha  = \dfrac{4 }{5} =0,8\); \(\cos \alpha  = \dfrac{3}{5}= 0,6\) 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved