Đề bài
Cho góc \(\alpha \;\;({0^o} < \alpha < {180^o})\) thỏa mãn \(\tan \alpha = 3\)
Tính giá trị biểu thức: \(P = \frac{{2\sin \alpha - 3\cos \alpha }}{{3\sin \alpha + 2\cos \alpha }}\)
Phương pháp giải - Xem chi tiết
Chia cả tử và mẫu của P cho \(\cos \alpha\).
Lời giải chi tiết
Vì \(\tan \alpha = 3\) nên \(\cos \alpha \ne 0\)
\(\begin{array}{l}
\Rightarrow P = \dfrac{{\frac{{2\sin \alpha - 3\cos \alpha }}{{\cos \alpha }}}}{{\frac{{3\sin \alpha + 2\cos \alpha }}{{\cos \alpha }}}} = \dfrac{{2\frac{{\sin \alpha }}{{\cos \alpha }} - 3}}{{3\frac{{\sin \alpha }}{{\cos \alpha }} + 2}}\\
\Leftrightarrow P = \dfrac{{2\tan \alpha - 3}}{{3\tan \alpha + 2}} = \dfrac{{2.3 - 3}}{{3.3 + 2}} = \dfrac{3}{{11}}.
\end{array}\)
Cách 2:
Ta có: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha \ne {90^o})\)
\( \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = 1 + {3^2} = 10\)
\( \Leftrightarrow {\cos ^2}\alpha = \frac{1}{{10}} \Leftrightarrow \cos \alpha = \pm \frac{{\sqrt {10} }}{{10}}\)
Vì \({0^o} < \alpha < {180^o}\) nên \(\sin \alpha > 0\).
Mà \(\tan \alpha = 3 > 0 \Rightarrow \cos \alpha > 0 \Rightarrow \cos \alpha = \frac{{\sqrt {10} }}{{10}}\)
Lại có: \(\sin \alpha = \cos \alpha .\tan \alpha = \frac{{\sqrt {10} }}{{10}}.3 = \frac{{3\sqrt {10} }}{{10}}.\)
\( \Rightarrow P = \dfrac{{2.\frac{{3\sqrt {10} }}{{10}} - 3.\frac{{\sqrt {10} }}{{10}}}}{{3.\frac{{3\sqrt {10} }}{{10}} + 2.\frac{{\sqrt {10} }}{{10}}}} = \dfrac{{\frac{{\sqrt {10} }}{{10}}\left( {2.3 - 3} \right)}}{{\frac{{\sqrt {10} }}{{10}}\left( {3.3 + 2} \right)}} = \dfrac{3}{{11}}.\)
SBT VĂN 10 TẬP 1 KẾT NỐI TRI THỨC VỚI CUỘC SỐNG
Chủ đề 7: Bảo tồn cảnh quan thiên nhiên
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Giáo dục kinh tế và pháp luật lớp 10
Chủ đề 9: Tìm hiểu nghề nghiệp
Bài 7. Thường thức phòng tránh một số loại bom, mìn, đạn, vũ khí hóa học, vũ khí sinh học, vũ khí công nghệ cao, thiên tai, dịch bệnh và cháy nổ
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10