Đề bài
Cho tam giác \(ABC\) có \(a = 3,\,\,b = 5,\,\,c = 7.\)
a) Tính các góc của tam giác, làm tròn đến độ.
b) Tính bán kính đường tròn nội tiếp và đường tròn ngoại tiếp của tam giác.
Phương pháp giải - Xem chi tiết
- Áp dụng định lý cosin để tính các \(\widehat A,\,\,\widehat B,\,\,\widehat C.\)
- Áp dụng định lý sin để tính R: \(\frac{c}{{\sin C}} = 2R.\)
- Tính nửa chu vi và diện tích của \(\Delta ABC\)
- Tính bán kính đường tròn nội tiếp \(\Delta ABC\): \(r={S \over p} \)
Lời giải chi tiết
a) Áp dụng định lý cosin, ta có:
\(\left\{ {\begin{array}{*{20}{c}}{\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}\\{\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}\\{\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\cos A = \frac{{25 + 49 - 9}}{{2.5.7}} = \frac{{13}}{{14}}}\\{\cos B = \frac{{9 + 49 - 25}}{{2.3.7}} = \frac{{11}}{{14}}}\\{\cos C = \frac{{9 + 25 - 49}}{{2.3.5}} = \frac{{ - 1}}{2}}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\widehat A \approx {{22}^ \circ }}\\{\widehat B \approx {{38}^ \circ }}\\{\widehat C = {{120}^ \circ }}\end{array}} \right.} \right.} \right.\)
b) Bán kính đường tròn ngoại tiếp \(\Delta ABC\) là:
\(R = \frac{c}{{2\sin C}} = \frac{7}{{2.\sin {{120}^ \circ }}} = \frac{{7\sqrt 3 }}{3}.\)
Nửa chu vi \(\Delta ABC\) là: \(p = \frac{{a + b + c}}{2} = \frac{{3 + 5 + 7}}{2} = \frac{{15}}{2}.\)
Diện tích \(\Delta ABC\) là: \(S = \frac{1}{2}ab\sin C = \frac{1}{2}.3.5.\sin {120^ \circ } = \frac{{15\sqrt 3 }}{4}.\)
Bán kính đường tròn nội tiếp \(\Delta ABC\) là: \(r = \frac{S}{p} = \frac{{15\sqrt 3 }}{4}:\frac{{15}}{2} = \frac{{\sqrt 3 }}{2}.\)
Chủ đề 2. Điều lệnh đội ngũ và chiến thuật bộ binh
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Địa lí lớp 10
Chủ đề 7. Nguyên tố nhóm VIIA (nhóm Halogen)
Chương 6. Năng lượng
Extra Speaking Tasks
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10