SBT TOÁN TẬP 1 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Giải bài 3.47 trang 44 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Đề bài

Trên sườn đồi, với độ dốc \(12\% \) (độ dốc của sườn đồi được tính bằng tang của một góc tạo bởi sườn đồi với phương nằm ngang) có một cây cao mọc thẳng đứng. Ở phía chân đồi, cách gốc cây 30m, người ta nhìn ngọn cây dưới một góc \({45^ \circ }\) so với phương nằm ngang. Tính chiều cao của cây đó (làm tròn đến hàng đơn vị, theo đơn vị mét).

Phương pháp giải - Xem chi tiết

- Tính góc BAH, góc CAB và góc BCA

-  Áp dụng định lý sin để tính cạnh BC: \(\frac{{BC}}{{\sin \widehat {BAC}}} = \frac{{AB}}{{\sin \widehat {ACB}}}\)

Lời giải chi tiết

Do sườn đồi có độ dốc \(12\% \) nên sườn đồi tạo với phương nằm ngang một góc \(\tan HAB = 12\% \,\, \Rightarrow \,\,\widehat {HAB} = {\tan ^{ - 1}}\left( {12\% } \right) \approx {7^ \circ }\)

Ta có: \(\widehat {BAC} = \widehat {HAC} - \widehat {HAB} \approx {45^ \circ } - {7^ \circ } \approx {38^ \circ }\) và \(\widehat {BCA} = {45^ \circ }\)

Áp dụng định lý sin trong \(\Delta ABC,\) ta có:

\(\begin{array}{l}\frac{{BC}}{{\sin \widehat {BAC}}} = \frac{{AB}}{{\sin \widehat {ACB}}}\\ \Rightarrow \,\,BC = \frac{{AB.\sin \widehat {BAC}}}{{\sin \widehat {ACB}}}\\ \Rightarrow \,\,BC = \frac{{30.\sin {{38}^ \circ }}}{{\sin {{45}^ \circ }}} \approx 26\,\,\left( m \right)\end{array}\)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved