PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1

Bài 35 trang 10 SBT toán 9 tập 1

Đề bài

Với \(n\) là số tự nhiên, chứng minh: 

\({(\sqrt {n + 1}  - \sqrt n )^2} \)\(= \sqrt {{{(2n + 1)}^2}}  - \sqrt {{{(2n + 1)}^2} - 1} \)

Viết đẳng thức trên khi \(n\) bằng \(1, 2, 3, 4.\) 

Phương pháp giải - Xem chi tiết

+) Áp dụng hằng đẳng thức: 

\({(A - B)^2} = {A^2} - 2AB + {B^2}\)

+) Nếu \(A \ge 0,B \ge 0\) thì \(\sqrt {A.B}  = \sqrt A .\sqrt B \) 

+) \(\sqrt {{A^2}}  = \left| A \right|\)

Với \(A \ge 0\) thì \(\left| A \right| = A\)

Với \(A < 0\) thì \(\left| A \right| = - A\)

Lời giải chi tiết

Ta có vế phải 

\(\eqalign{
& {\left( {\sqrt {n + 1} - \sqrt n } \right)^2} \cr 
& = n + 1 - 2\sqrt {n(n + 1)} + n \cr 
& = 2n + 1 - 2\sqrt {n(n + 1)} \cr} \) 

Ta có vế trái:

\(\eqalign{
& \sqrt {{{(2n + 1)}^2}} - \sqrt {{{(2n + 1)}^2} - 1} \cr  
& = \left| {2n + 1} \right| - \sqrt {(2n + 1 + 1)(2n + 1 - 1)} \cr} \)

\(\eqalign{
& = 2n + 1 - \sqrt {2(n + 1)2n} \cr 
& = 2n + 1 - \sqrt {4(n + 1)n} \cr} \)

\(\eqalign{
& = 2n + 1 - \sqrt 4 .\sqrt {n(n + 1)} \cr 
& = 2n + 1 - 2\sqrt {n(n + 1)} \cr} \)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

- Với \(n = 1\), ta có:  \({\left( {\sqrt 2  - \sqrt 1 } \right)^2} = \sqrt 9  - \sqrt 8 \)

- Với \(n = 2\), ta có: \({\left( {\sqrt 3  - \sqrt 2 } \right)^2} = \sqrt {25}  - \sqrt {24} \)

- Với \(n = 3\), ta có: \({\left( {\sqrt 4  - \sqrt 3 } \right)^2} = \sqrt {49}  - \sqrt {48} \)

- Với \(n = 4\), ta có: \({\left( {\sqrt 5  - \sqrt 4 } \right)^2} = \sqrt {81}  - \sqrt {80} \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved