1. Nội dung câu hỏi
Phân tích mỗi đa thức sau thành nhân tử:
a) \(3{x^2} - \sqrt 3 x + \frac{1}{4}\)
b) \({x^2} - x - {y^2} + y\)
c) \({x^3} + 2{x^2} + x - 16x{y^2}\)
2. Phương pháp giải
Sử dụng các hằng đẳng thức, ta có thể phân tích đa thức thành nhân tử bằng cách vận dụng trực tiếp hằng đẳng thức hoặc bằng cách vận dụng hằng đẳng thức thông qua nhóm số hạng và đặt nhân tử chung.
3. Lời giải chi tiết
a) Ta có:
\(\begin{array}{l}3{x^2} - \sqrt 3 x + \frac{1}{4}\\ = {\left( {\sqrt 3 x} \right)^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\\ = {\left( {\sqrt 3 x - \frac{1}{2}} \right)^2}\end{array}\)
b) Ta có:
\(\begin{array}{l}{x^2} - x - {y^2} + y\\ = \left( {{x^2} - {y^2}} \right) - \left( {x - y} \right)\\ = \left( {x - y} \right)\left( {x + y} \right) - \left( {x - y} \right)\\ = \left( {x - y} \right)\left( {x + y - 1} \right)\end{array}\)
c) Ta có:
\(\begin{array}{l}{x^3} + 2{x^2} + x - 16x{y^2}\\ = x\left( {{x^2} + 2x + 1 - 16{y^2}} \right)\\ = x\left[ {\left( {{x^2} + 2x + 1} \right) - 16{y^2}} \right]\\ = x\left[ {{{\left( {x + 1} \right)}^2} - 16{y^2}} \right]\\ = x\left( {x - 4y + 1} \right)\left( {x + 4y + 1} \right)\end{array}\)
Chương 2. Cơ khí
Unit 4. The material world
Tải 10 đề thi giữa kì 2 Sinh 8
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Ngữ văn lớp 8
Tải 30 đề ôn tập kiểm tra học kì 1 Toán 8
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8