1. Nội dung câu hỏi
Tiếp tuyến của đồ thị hàm số \(y = 2{x^3} - 3{x^2} - 11x + 13\) tại điểm \(M\) có hệ số góc là 1. Tìm toạ độ điểm \(M\).
2. Phương pháp giải
Tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right)\) có hệ số góc là \(f'\left( {{x_0}} \right)\).
3. Lời giải chi tiết
\(y' = 6{x^2} - 6x - 11\)
Tiếp tuyến của đồ thị hàm số \(y = 2{x^3} - 3{x^2} - 11x + 13\) tại điểm \(M\left( {{x_0};{y_0}} \right)\) có hệ số góc là
\(6x_0^2 - 6{x_0} - 11 = 1 \Leftrightarrow 6x_0^2 - 6{x_0} - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = - 1\\{x_0} = 2\end{array} \right.\)
Vậy \(M\left( { - 1;19} \right)\) hoặc \(M\left( {2; - 5} \right)\).
Chuyên đề 3: Danh nhân trong lịch sử Việt Nam
Chủ đề 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở Biển Đông
Chương 1. Mô tả dao động
Chủ đề 2: Kĩ thuật dừng bóng và kĩ thuật đánh đầu
Chương 5. Dẫn xuất halogen - alcohol - phenol
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11