1. Nội dung câu hỏi
Biểu diễn dưới dạng phân số của \(1,\left( 7 \right)\) là:
A. \(\frac{7}{9}\)
B. \(\frac{{10}}{9}\)
C. \(\frac{{10}}{3}\)
D. \(\frac{{16}}{9}\)
2. Phương pháp giải
Sử dụng công thức tính tổng của cấp số nhân lùi vô hạn.
3. Lời giải chi tiết
Ta có \(1,\left( 7 \right) = 1 + \frac{7}{{10}} + \frac{7}{{100}} + \frac{7}{{1000}} + ...\)
Xét cấp số nhân \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1} = \frac{7}{{10}}\) và công bội \(q = \frac{1}{{10}}\).
Do \(q = \frac{1}{{10}} < 1\) nên \(\left( {{u_n}} \right)\) là cấp số nhân lùi vô hạn.
Tổng của cấp số nhân này là \(S = \frac{{u{\rm{\_1}}}}{{1 - q}} = \frac{{\frac{7}{{10}}}}{{1 - \frac{1}{{10}}}} = \frac{7}{9}\).
Do đó \(1,\left( 7 \right) = 1 + \left( {\frac{7}{{10}} + \frac{7}{{100}} + \frac{7}{{1000}} + ...} \right) = 1 + \frac{7}{9} = \frac{{16}}{9}\)
Đáp án đúng là D.
Phần hai: Giáo dục pháp luật
Chủ đề 5: Phối hợp kĩ thuật đánh cầu cao thuận tay
Chương 3: Điện trường
Review (Units 1 - 4)
Chủ đề 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở biển Đông
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11