SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 36 - Mục Bài tập trang 71

1. Nội dung câu hỏi

Cho phương trình dao động \(x\left( t \right) = 10{\rm{cos}}\left( {\frac{{2\pi }}{5}t + \frac{\pi }{3}} \right)\), ở đây li độ \(x\) tính bằng centimét và thời gian \(t\) tính bằng giây.

a) Tìm thời điểm đầu tiên để vật có li độ lớn nhất.

b) Tìm thời điểm đầu tiên để vật có vận tốc bằng 0.

c) Tìm thời điểm đầu tiên để vật có gia tốc bằng 0.


2. Phương pháp giải

Áp dụng tính chất \({\rm{cos}}\left( {\frac{{2\pi }}{5}t + \frac{\pi }{3}} \right) \le 1\)

a) Vật có li độ lớn nhất khi \(10{\rm{cos}}\left( {\frac{{2\pi }}{5}t + \frac{\pi }{3}} \right) = 10 \Rightarrow t\)(\(t \ge 0\))

b) Ta có vận tốc \(v\left( t \right) = x'\left( t \right) =  - 4\pi {\rm{sin}}\left( {\frac{{2\pi }}{5}t + \frac{\pi }{3}} \right)\).

Vận tốc bằng 0 tức là \( - 4\pi {\rm{sin}}\left( {\frac{{2\pi }}{5}t + \frac{\pi }{3}} \right) = 0 \Rightarrow t\) \(t \ge 0\)

c) Ta có gia tốc a \(\left( t \right) = x''\left( t \right) =  - \frac{{8{\pi ^2}}}{5}{\rm{cos}}\left( {\frac{{2\pi }}{5}t + \frac{\pi }{3}} \right)\).

Gia tốc bằng 0 tức là \( - \frac{{8{\pi ^2}}}{5}{\rm{cos}}\left( {\frac{{2\pi }}{5}t + \frac{\pi }{3}} \right) = 0 \Rightarrow t\) \(\left( {t \ge 0} \right)\)

 

3. Lời giải chi tiết 

a) Vật có li độ lớn nhất khi \(10{\rm{cos}}\left( {\frac{{2\pi }}{5}t + \frac{\pi }{3}} \right) = 10 \Leftrightarrow t = \frac{{ - 5}}{6} + 5k,k \in \mathbb{Z}\).

Do \(t \ge 0\) nên thời điểm đầu tiên vật có li độ lớn nhất tương ứng với \(k = 1\), tức là tại thời điểm \(t = \frac{{ - 5}}{6} + 5 = \frac{{25}}{6}\) (giây).

b) Ta có vận tốc \(v\left( t \right) = x'\left( t \right) =  - 4\pi {\rm{sin}}\left( {\frac{{2\pi }}{5}t + \frac{\pi }{3}} \right)\).

Vận tốc bằng 0 tức là \( - 4\pi {\rm{sin}}\left( {\frac{{2\pi }}{5}t + \frac{\pi }{3}} \right) = 0 \Leftrightarrow t =  - \frac{5}{6} + \frac{5}{2}k,k \in \mathbb{Z}\).

Do \(t \ge 0\) nên thời điểm đầu tiên vật có vận tốc bằng 0 tương ứng với \(k = 1\), tức là tại thời điểm \(t = \frac{{ - 5}}{6} + \frac{5}{2} = \frac{5}{3}\) (giây).

c) Ta có gia tốc a \(\left( t \right) = x''\left( t \right) =  - \frac{{8{\pi ^2}}}{5}{\rm{cos}}\left( {\frac{{2\pi }}{5}t + \frac{\pi }{3}} \right)\).

Gia tốc bằng 0 tức là \( - \frac{{8{\pi ^2}}}{5}{\rm{cos}}\left( {\frac{{2\pi }}{5}t + \frac{\pi }{3}} \right) = 0 \Leftrightarrow t = \frac{5}{{12}} + \frac{5}{2}k,k \in \mathbb{Z}\).

Do \(t \ge 0\) nên thời điểm đầu tiên vật có gia tốc bằng 0 tương ứng với \(k = 1\), tức là tại thời điểm \(t = \frac{5}{{12}} + \frac{5}{2} = \frac{{35}}{{12}}\) (giây).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved