Bài 3.67 trang 135 SBT hình học 12

Đề bài

Trong không gian Oxyz, cho bốn điểm  A(1; 0; 0), B(0; 1; 0), C(0; 0; 1) và D(1; 1; 0).

a) Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D.

b) Xác định tọa độ tâm và bán kính của đường tròn là giao tuyến của mặt cầu (S) với mặt phẳng (ACD).

Phương pháp giải - Xem chi tiết

- Gọi phương trình mặt cầu \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\)

- Thay tọa độ các điểm \(A,B,C,D\) vào phương trình mặt cầu tìm \(a,b,c,d\).

Lời giải chi tiết

a) Phương trình mặt cầu (S) có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) (*)

Thay tọa độ các điểm A, B, C, D vào (*) ta có:

\(\left\{ {\begin{array}{*{20}{c}}{1 - 2a + d = 0}\\{1 - 2b + d = 0}\\{1 - 2c + d = 0}\\{2 - 2a - 2b + d = 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = \dfrac{1}{2}}\\{b = \dfrac{1}{2}}\\{c = \dfrac{1}{2}}\\{d = 0}\end{array}} \right.\)

Vậy phương trình mặt cầu (S) là: x2 + y2 + z2 – x – y – z = 0

b) Ta có \(\overrightarrow {AC}  = ( - 1;0;1)\) và \(\overrightarrow {AD}  = (0;1;0)\)

Suy ra (ACD) có vecto pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {AC} ,\overrightarrow {AD} } \right] = ( - 1;0; - 1)\) hay \(\overrightarrow {n'}  = (1;0;1)\)

Vậy phương trình của mặt phẳng (ACD) là x – 1 + z = 0  hay x + z – 1 = 0

Mặt cầu (S) có tâm  \(I\left( {\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}} \right)\)

Ta có \(I \in (ACD)\), suy ra mặt phẳng (ACD) cắt (S) theo một đường tròn có tâm \(I\left( {\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}} \right)\) và có bán kính r bằng bán kính mặt cầu (S), vậy:

\(r = \sqrt {{a^2} + {b^2} + {c^2} - d} \)\( = \sqrt {\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4}}  = \dfrac{{\sqrt 3 }}{2}\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved