Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Cho biểu thức
\(B = \sqrt {16x + 16} - \sqrt {9x + 9} + \sqrt {4x + 4} \)\( + \sqrt {x + 1} \) với \(x \ge - 1\)
a) Rút gọn biểu thức B
b) Tìm x sao cho B có giá trị là 16.
Phương pháp giải - Xem chi tiết
+ Sử dụng quy tắc đặt nhân tử chung và quy tắc khai phương một tích để đưa các số hạng về dạng có cùng biểu thức dưới dấu căn.
+ \(\sqrt x =a \Leftrightarrow (\sqrt x)^2=a^2 \Leftrightarrow x=a^2\), với \(a \ge 0.\)
+ Thay giá trị của B bằng \(16\) rồi tìm giá trị của \(x.\)
Lời giải chi tiết
a) \(B = \sqrt {16x + 16} - \sqrt {9x + 9} \)\(+ \sqrt {4x + 4} + \sqrt {x + 1} \)
\( = \sqrt {16\left( {x + 1} \right)} - \sqrt {9\left( {x + 1} \right)} \)\(+ \sqrt {4\left( {x + 1} \right)} + \sqrt {x + 1} \)
\( = 4\sqrt {x + 1} - 3\sqrt {x + 1} \)\(+ 2\sqrt {x + 1} + \sqrt {x + 1} \)
\( = 4\sqrt {x + 1} \)
b) \(B = 16\) \( \Leftrightarrow 4\sqrt {x + 1} = 16\) \( \Leftrightarrow \sqrt {x + 1} = 4\)
Ta có : \(4 \ge 0\) nên \(x + 1 = 16\) hay \(x = 15\).
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Toán lớp 9
Đề thi vào 10 môn Toán Huế
Đề thi vào 10 môn Toán Quảng Ninh
Đề thi vào 10 môn Toán Đắk Lắk
Đề thi vào 10 môn Toán Kiên Giang