1. Nội dung câu hỏi
Trong mặt phẳng tọa độ Oxy, xét các phép biến hình sau đây:
– Phép biến hình f biến mỗi điểm M(x; y) thành điểm M’(–x; –y);
– Phép biến hình g biến mỗi điểm M(x; y) thành điểm M’(2x; 2y).
Trong hai phép biến hình trên, phép nào là phép dời hình? Giải thích.
2. Phương pháp giải
Phép dời hình là phép biến hình bảo toàn khoảng cách (không làm thay đổi khoảng cách) giữa 2 điểm bất kì.
3. Lời giải chi tiết
Lấy hai điểm bất kì \(M({x_1};{\rm{ }}{y_1});\,\,N({x_2};{\rm{ }}{y_2}).\)
Suy ra \(MN = \sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \)
– Ta có ảnh của M, N qua phép biến hình f lần lượt là \(M'(-{x_1};{\rm{ }}-{y_1}),{\rm{ }}N'(-{x_2};{\rm{ }}-{y_2}).\)
Khi đó \({\rm{M'N'}} = \sqrt {{{\left( { - {{\rm{x}}_2} + {{\rm{x}}_1}} \right)}^2} + {{\left( { - {{\rm{y}}_2} + {{\rm{y}}_1}} \right)}^2}} = \sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} = MN\)
Vì vậy f là một phép dời hình.
– Ta có ảnh của M, N qua phép biến hình g lần lượt là \(M'(2{x_1};{\rm{ }}2{y_1}),{\rm{ }}N'(2{x_2};{\rm{ }}2{y_2}).\)
Khi đó \({\rm{M'N'}} = \sqrt {{{\left( {2{{\rm{x}}_2} - 2{{\rm{x}}_1}} \right)}^2} + {{\left( {2{{\rm{y}}_2} - 2{{\rm{y}}_1}} \right)}^2}} = \sqrt {4{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + 4{{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \)
\( = 2\sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} = 2MN \ne MN\)
Vì vậy g không phải là một phép dời hình.
Vậy trong hai phép biến hình đã cho, phép dời hình là f.
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương I - Hóa học 11
Unit 3: A Party - Một bữa tiệc
CHƯƠNG 2: NITƠ - PHOTPHO
Unit 4: Planet Earth
Unit 2: Get well
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11