Chuyên đề 1: Hệ phương trình bậc nhất ba ẩn và ứng dụng

Bài 4 trang 13

Đề bài

Tìm phương trình của parabol \((P):y = a{x^2} + bx + c\;(a \ne 0)\)biết:

a) (P) có trục đối xứng \(x = 1\) và đi qua hai điểm \(A(1; - 4),B(2; - 3).\)

b) (P) có đỉnh \(I\left( {\frac{1}{2};\frac{3}{4}} \right)\) và đi qua điểm \(M( - 1;3)\)

Lời giải chi tiết

Trục đối xứng \(x =  - \frac{b}{{2a}}\)

Đỉnh \(I\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\) với \(\Delta  = {b^2} - 4ac\)

Lời giải chi tiết

a) (P) có trục đối xứng \(x = 1 \Rightarrow  - \frac{b}{{2a}} = 1 \Leftrightarrow 2a + b = 0\quad (1)\)

Thay tọa độ 2 điểm \(A(1; - 4),B(2; - 3)\) vào phương trình của parabol, kết hợp (1) ta được hệ phương trình:

 \(\left\{ \begin{array}{l}2a + b = 0\quad (1)\\a + b + c =  - 4\quad \;(2)\\4a + 2b + c =  - 3\quad (3)\end{array} \right.\)

Sử dụng máy tính cầm tay, ta suy ra \(a = 1,b =  - 2,c =  - 3\)

Vậy phương trình của parabpol (P) là \(y = {x^2} - 2x - 3\)

b) (P) có đỉnh  \(I\left( {\frac{1}{2};\frac{3}{4}} \right) \Rightarrow  - \frac{b}{{2a}} = \frac{1}{2}\quad (1)\;; - \frac{{{b^2} - 4ac}}{{4a}} = \frac{3}{4}\quad (2)\)

\((1) \Leftrightarrow a + b = 0\) Thay \(b =  - a\) vào (2) ta được: \((2) \Leftrightarrow {a^2} - 4ac =  - 3a \Leftrightarrow a - 4c =  - 3\) (do \(a \ne 0\))

Thay tọa độ điểm \(M( - 1;3)\) vào phương trình của parabol, ta được: \(a - b + c = 3\)

Kết hợp (1) và (2) ta được hệ phương trình:

 \(\left\{ \begin{array}{l}a + b = 0\quad (1)\\a - 4c =  - 3\quad \;(2)\\a - b + c = 3\quad (3)\end{array} \right.\)

Sử dụng máy tính cầm tay, ta suy ra \(a = 1,b =  - 1,c = 1\)

Vậy phương trình của parabpol (P) là \(y = {x^2} - x + 1\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved