Đề bài
Giải các bất phương trình bậc hai sau:
a) \({x^2} - 3x < 4\)
b) \(0 < 2{x^2} - 11x - 6\)
c) \( - 2{\left( {2x + 3} \right)^2} + 4x + 30 \le 0\)
d) \( - 3\left( {{x^2} - 4x - 1} \right) \le {x^2} - 8x + 28\)
e) \(2{\left( {x - 1} \right)^2} \ge 3{x^2} + 6x + 27\)
g) \(2{\left( {x + 1} \right)^2} + 9\left( { - x + 2} \right) < 0\)
Lời giải chi tiết
a) Ta có \({x^2} - 3x < 4 \Leftrightarrow {x^2} - 3x - 4 < 0\)
Xét tam thức bậc hai \({x^2} - 3x - 4\) có \(a = 1 > 0\) và có hai nghiệm là \({x_1} = - 1\) và \({x_2} = 4\), nên \({x^2} - 3x - 4 < 0\) khi và chỉ khi \( - 1 < x < 4\)
Vậy bất phương trình có tập nghiệm là \(\left( { - 1;4} \right)\)
b) Ta có \(0 < 2{x^2} - 11x - 6 \Leftrightarrow 2{x^2} - 11x - 6 > 0\)
Xét tam thức bậc hai \(2{x^2} - 11x - 6\) có \(a = 2 > 0\) và có hai nghiệm là \({x_1} = - \frac{1}{2}\) và \({x_2} = 6\), nên \(2{x^2} - 11x - 6 > 0\) khi và chỉ khi \(x < - \frac{1}{2}\) hoặc \(x > 6\)
Vậy bất phương trình có tập nghiệm là \(\left( { - \infty ; - \frac{1}{2}} \right) \cup \left( {6; + \infty } \right)\)
c) Ta có \( - 2{\left( {2x + 3} \right)^2} + 4x + 30 \le 0 \Leftrightarrow - 8{x^2} - 20x + 12 \le 0\)
Xét tam thức bậc hai \( - 8{x^2} - 20x + 12\) có \(a = - 8 < 0\) và có hai nghiệm là \({x_1} = - 3\) và \({x_2} = \frac{1}{2}\), nên \( - 8{x^2} - 20x + 12 \le 0\) khi và chỉ khi \(x \le - 3\) hoặc \(x \ge \frac{1}{2}\)
Vậy bất phương trình có tập nghiệm là \(\left( { - \infty ; - 3} \right] \cup \left[ {\frac{1}{2}; + \infty } \right)\)
d) Ta có \( - 3\left( {{x^2} - 4x - 1} \right) \le {x^2} - 8x + 28 \Leftrightarrow 4{x^2} - 20x + 25 \ge 0\)
Xét tam thức bậc hai \(4{x^2} - 20x + 25 \ge 0\) có \(a = 4 > 0\) và nghiệm duy nhất là \(x = \frac{5}{2}\) nên \(4{x^2} - 20x + 25 \ge 0\) với mọi \(x \in \mathbb{R}\)
Vậy bất phương trình có tập nghiệm là \(\mathbb{R}\)
e) Ta có \(2{\left( {x - 1} \right)^2} \ge 3{x^2} + 6x + 27 \Leftrightarrow {x^2} + 10x + 25 \le 0\)
Xét tam thức bậc hai \({x^2} + 10x + 25 \le 0\) có \(a = 1 > 0\) và nghiệm duy nhất là \(x = - 5\) nên \({x^2} + 10x + 25 \le 0\) khi và chỉ khi \(x = - 5\)
Vậy bất phương trình có tập nghiệm là \(\left\{ { - 5} \right\}\)
g) Ta có \(2{\left( {x + 1} \right)^2} + 9\left( { - x + 2} \right) < 0 \Leftrightarrow 2{x^2} - 5x + 20 < 0\)
Xét tam thức bậc hai \(2{x^2} - 5x + 20\) có \(a = 2 > 0\) và \(\Delta = - 135 < 0\) nên \(2{x^2} - 5x + 20\) luôn lớn hơn không với mọi x
Vậy bất phương trình vô nghiệm
Đề khảo sát chất lượng đầu năm
Chủ đề 1. Lịch sử và Sử học
Bình Ngô đại cáo
Đề kiểm tra giữa học kì 2
Grammar Builder
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10