Đề bài
Cho q là số thực khác 1. Chứng minh: \(1 + q + {q^2} + ... + {q^{n - 1}} = \frac{{1 - {q^n}}}{{1 - q}}\) với mọi \(n \in \mathbb{N}*\)
Phương pháp giải - Xem chi tiết
Phương pháp quy nạp: Chứng minh mệnh đề đúng với \(n \ge p\)
Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)
Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.
Lời giải chi tiết
Bước 1: Khi \(n = 1\) ta có \(1 = \frac{{1 - {q^1}}}{{1 - q}}\) hiển nhiên đúng với \(q \ne 1\)
Như vậy đẳng thức đúng với \(n = 1\)
Bước 2: Với k là một số nguyên dương tùy ý mà đẳng thức đúng, ta phải chứng minh đẳng thức đúng với k+1, tức là:
\(1 + q + {q^2} + ... + {q^{k - 1}} + {q^k} = \frac{{1 - {q^{k + 1}}}}{{1 - q}}\)
Thật vậy, theo giả thiết quy nạp ta có:
\(1 + q + {q^2} + ... + {q^{k - 1}} = \frac{{1 - {q^k}}}{{1 - q}}\)
Suy ra
\(\begin{array}{l}1 + q + {q^2} + ... + {q^{k - 1}} + {q^k} = \frac{{1 - {q^k}}}{{1 - q}} + {q^k}\\ = \frac{{1 - {q^k}}}{{1 - q}} + \frac{{{q^k} - {q^{k + 1}}}}{{1 - q}} = \frac{{1 - {q^k} + {q^k} - {q^{k + 1}}}}{{1 - q}} = \frac{{1 - {q^{k + 1}}}}{{1 - q}}\end{array}\)
Vậy đẳng thức đúng với k+1. Do đó, theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi \(n \in \mathbb{N}*\).
Đăm Săn đi bắt nữ thần mặt trời
Vocabulary Builder
Nghị luận văn học
Chương 1. Thành phần hóa học của tế bào
Chương 2. Mô tả chuyển động
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10