1. Nội dung câu hỏi
Tìm tập xác định của hàm số lượng giác \(y = \frac{{\sin x - 2\cos 3x}}{{\sin x + \sin \left( {2x - \frac{\pi }{3}} \right)}}\)
2. Phương pháp giải
Sử dụng kiến thức về phương trình lượng giác để giải:
Phương trình \(\sin x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = \pi - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha = m\).
Đặc biệt: \(\sin u = \sin v \) \( \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = \pi - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)
3. Lời giải chi tiết
Hàm số \(y = \frac{{\sin x - 2\cos 3x}}{{\sin x + \sin \left( {2x - \frac{\pi }{3}} \right)}}\) xác định khi \(\sin x + \sin \left( {2x - \frac{\pi }{3}} \right) \ne 0\)
\( \Leftrightarrow \sin x \ne - \sin \left( {2x - \frac{\pi }{3}} \right) \) \( \Leftrightarrow \sin x \ne \sin \left( { - 2x + \frac{\pi }{3}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}x \ne - 2x + \frac{\pi }{3} + k2\pi \\x \ne \pi - \left( { - 2x + \frac{\pi }{3}} \right) + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{9} + \frac{{k2\pi }}{3}\\x \ne \frac{{ - 2\pi }}{3} - k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{9} + \frac{{k2\pi }}{3},\frac{{ - 2\pi }}{3} - k2\pi \left| {k \in \mathbb{Z}} \right.} \right\}\)
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Hóa học lớp 11
Bài 8: Tiết 2: Kinh tế Liên bang Nga - Tập bản đồ Địa lí 11
Chương 4: Dòng điện không đổi
Unit 5: Global warming
Unit 7: Education for school-leavers
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11