1. Nội dung câu hỏi
Hãy xác định phép vị tự biến đường tròn (O; R) thành đường tròn (O’; R’) (R ≠ R’) trong các trường hợp sau:
a) Hai đường tròn cắt nhau.
b) Hai đường tròn tiếp xúc ngoài.
c) Hai đường tròn tiếp xúc trong.
d) Hai đường tròn đựng nhau.
e) Hai đường tròn ở ngoài nhau.
2. Phương pháp giải
Phép vị tự tỉ số k biến đoạn thẳng thành đoạn thẳng nhân lên với |k|, biến tam giác thành tam giác đồng dạng với tỉ số đồng dạng |k|, biến đường tròn bán kính r thành đường tròn bán kính
3. Lời giải chi tiết
a) Lấy điểm M bất kì thuộc (O; R).
Đường thẳng qua O’ và song song với OM cắt đường tròn (O’; R’) tại hai điểm M’ và M’’ (giả sử M, M’ nằm cùng phía đối với đường thẳng OO’ và M, M’’ nằm khác phía đối với đường thẳng OO’).
Giả sử đường thẳng MM’ cắt đường thẳng OO’ tại điểm I nằm ngoài đoạn OO’ và đường thẳng MM’’ cắt đường thẳng OO’ tại điểm I’ nằm trong đoạn OO’.
Ta có
Suy ra
Do đó
Mà
Suy ra
Ta có biến đường tròn (O; R) thành đường tròn
Chứng minh tương tự, ta được khi O, O’ nằm khác phía đối với I’, ta có
Vậy ta có hai phép vị tự thỏa mãn yêu cầu bài toán là
b) Lấy điểm M bất kì thuộc
Đường thẳng qua O’ và song song với OM cắt đường tròn (O’; R’) tại hai điểm M’ và M’’ (giả sử M, M’ nằm cùng phía đối với đường thẳng OO’ và M, M’’ nằm khác phía đối với đường thẳng OO’).
Giả sử đường thẳng MM’ cắt đường thẳng OO’ tại điểm I nằm ngoài đoạn OO’ và đường thẳng MM’’ cắt đường thẳng OO’ tại điểm I’ nằm trong đoạn OO’ và I’ là tiếp điểm của hai đường tròn.
Ta có
Suy ra
Do đó
Mà
Suy ra
Ta có biến đường tròn (O; R) thành đường tròn
Chứng minh tương tự, ta được khi O, O’ nằm khác phía đối với I’, ta có
Vậy ta có hai phép vị tự thỏa mãn yêu cầu bài toán là
c) Lấy điểm M bất kì thuộc
Đường thẳng qua O’ và song song với OM cắt đường tròn (O’; R’) tại hai điểm M’ và M’’ (giả sử M, M’ nằm cùng phía đối với đường thẳng OO’ và M, M’’ nằm khác phía đối với đường thẳng OO’).
Giả sử đường thẳng MM’ cắt đường thẳng OO’ tại điểm I nằm ngoài đoạn OO’ và đường thẳng MM’’ cắt đường thẳng OO’ tại điểm I’ nằm trong đoạn OO’.
Ta có
Suy ra
Do đó
Mà
Suy ra
Ta có V(I’, k’) biến đường tròn
Chứng minh tương tự, ta được khi O, O’ nằm khác phía đối với I’, ta có
Vậy ta có hai phép vị tự thỏa mãn yêu cầu bài toán là
d) Ta xét trường hợp (O; R) đựng (O’; R’), trường hợp còn lại tương tự.
⦁ Trường hợp 1:
Lấy điểm M bất kì thuộc (O; R).
Đường thẳng qua O’ và song song với OM cắt đường tròn (O’; R’) tại hai điểm M’ và M’’ (giả sử M, M’ nằm cùng phía đối với đường thẳng OO’ và M, M’’ nằm khác phía đối với đường thẳng OO’).
Giả sử đường thẳng MM’ cắt đường thẳng OO’ tại điểm I nằm ngoài đoạn OO’ và đường thẳng MM’’ cắt đường thẳng OO’ tại điểm I’ nằm trong đoạn OO’.
Ta có
Suy ra
Do đó
Mà
Suy ra
Ta có biến đường tròn (O; R) thành đường tròn
Chứng minh tương tự, ta được khi O, O’ nằm khác phía đối với I’, ta có
Vì vậy ta có hai phép vị tự thỏa mãn trường hợp 1 là
⦁ Trường hợp 2:
Vì
Suy ra
Do đó
Vì vậy
Khi đó ta có hai phép vị tự thỏa mãn trường hợp 2 là
Vậy có 4 phép vị tự thỏa mãn yêu cầu bài toán là:
– Nếu
– Nếu O ≡ O’ thì ta có hai phép vị tự thỏa mãn yêu cầu bài toán là
e) Lấy điểm M bất kì thuộc (O; R).
Đường thẳng qua O’ và song song với OM cắt đường tròn (O’; R’) tại hai điểm M’ và M’’ (giả sử M, M’ nằm cùng phía đối với đường thẳng OO’ và M, M’’ nằm khác phía đối với đường thẳng OO’).
Giả sử đường thẳng MM’ cắt đường thẳng OO’ tại điểm I nằm ngoài đoạn OO’ và đường thẳng MM’’ cắt đường thẳng OO’ tại điểm I’ nằm trong đoạn OO’.
Ta có
Suy ra
Do đó
Mà
Suy ra
Ta có
Chứng minh tương tự, ta được khi O, O’ nằm khác phía đối với I’, ta có
Vậy ta có hai phép vị tự thỏa mãn yêu cầu bài toán là
Phần hai. Địa lí khu vực và quốc gia
Chủ đề 2. Cảm ứng ở sinh vật
Chương 5. Dẫn xuất halogen - alcohol - phenol
Unit 8: Independent Life
Unit 6: World Heritages
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11