1. Nội dung câu hỏi
Tính đạo hàm của các hàm số sau:
a) \(y = \frac{x}{{\sin x - \cos x}}\);
b) \(y = \frac{{\sin x}}{x}\);
c) \(y = \sin x - \frac{1}{3}{\sin ^3}x;\)
d) \(y = \cos \left( {2\sin x} \right)\).
2. Phương pháp giải
+ Sử dụng kiến thức về đạo hàm của hàm hợp: Cho hàm số \(u = g\left( x \right)\) có đạo hàm tại x là \(u_x'\) và hàm số \(y = f\left( u \right)\) có đạo hàm tại u là \(y_u'\) thì hàm hợp \(y = f\left( {g\left( x \right)} \right)\) có đạo hàm tại x là \(y_x' = y_u'.u_x'\).
+ Sử dụng kiến thức về đạo hàm của hàm số để tính:
a) \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\), \(\left( {\sin x} \right)' = \cos x\), \(\left( {\cos x} \right)' = - \sin x\), \(x' = 1\)
b) \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\), \(\left( {\sin x} \right)' = \cos x\), \(x' = 1\)
c) \(\left( {u - v} \right)' = u' - v'\), \({\left[ {u\left( x \right)} \right]^\alpha } = \alpha {\left[ {u\left( x \right)} \right]^\alpha }\left[ {u\left( x \right)} \right]'\)
d) \(\left( {\sin u\left( x \right)} \right)' = \left( {u\left( x \right)} \right)'\cos u\left( x \right)\), \(\left( {\cos u\left( x \right)} \right)' = - \left( {u\left( x \right)} \right)'\sin u\left( x \right)\).
3. Lời giải chi tiết
a) \(y' \) \( = {\left( {\frac{x}{{\sin x - \cos x}}} \right)'} \) \( = \frac{{x'\left( {\sin x - \cos x} \right) - x\left( {\sin x - \cos x} \right)'}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\)
\( \) \( = \frac{{\sin x - \cos x - x\left( {\cos x + \sin x} \right)}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\)
b) \(y' \) \( = {\left( {\frac{{\sin x}}{x}} \right)'} \) \( = \frac{{\left( {\sin x} \right)'x - x'\sin x}}{{{x^2}}} \) \( = \frac{{x\cos x - \sin x}}{{{x^2}}}\);
c) \(y' \) \( = {\left( {\sin x - \frac{1}{3}{{\sin }^3}x} \right)'} \) \( = \cos x - \frac{1}{3}.3{\sin ^2}x\left( {\sin x} \right)' \) \( = \cos x - {\sin ^2}x\cos x\)
\( \) \( = \cos x\left( {1 - {{\sin }^2}x} \right) \) \( = {\cos ^3}x\);
d) \(y' \) \( = \left[ {\cos \left( {2\sin x} \right)} \right]' \) \( = - \left( {2\sin x} \right)'.\sin \left( {2\sin x} \right) \) \( = - 2\cos x.\sin \left( {2\sin x} \right)\).
Chuyên đề 3: Đọc, viết và giới thiệu về một tác giả văn học
Unit 8: Health and Life expectancy
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương IV - Hóa học 11
Chủ đề 2: Chủ nghĩa xã hội từ năm 1917 đến nay
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11