1. Nội dung câu hỏi
Biết rằng G là đồ thị có 6 đỉnh, 8 cạnh và các đỉnh của nó có bậc 2 hoặc 4. Đồ thị có bao nhiêu đỉnh bậc 4? Hãy vẽ một đồ thị như vậy.
2. Phương pháp giải
Bậc của một đỉnh A trong đồ thị G là số cạnh của đồ thị nhận đỉnh A làm đầu mút, kí hiệu là \(d(A)\)
3. Lời giải chi tiết
Theo Định lí, ta có tổng tất cả các bậc của các đỉnh bằng hai lần số cạnh của đồ thị.
Suy ra tổng tất cả các bậc của các đỉnh là: 2.8 = 16.
Theo đề, ta có đồ thị G có 6 đỉnh và các đỉnh của đồ thị G có bậc 2 hoặc 4.
Mà 2 + 2 + 2 + 2 + 4 + 4 = 16.
Vậy đồ thị G có 2 đỉnh bậc 4 và 4 đỉnh bậc 2.
Ta vẽ đồ thị như sau:
– Gọi 6 đỉnh của đồ thị là A, B, C, D, E, F có bậc của mỗi đỉnh lần lượt là 4; 4; 2; 2; 2; 2.
– Do có hai đỉnh A, B có số bậc cao nhất là 4 nên ta tùy ý chọn một đỉnh là đỉnh A để bắt đầu vẽ. Xuất phát từ đỉnh A, ta lần lượt nối tới các đỉnh B, C, D, E, mỗi đỉnh một cạnh.
– Tiếp theo, ta vẽ từ đỉnh có số bậc cao nhất còn lại là đỉnh B. Do từ đỉnh B đã có sẵn một cạnh đã vẽ ở trên nên xuất phát từ đỉnh B, ta lần lượt vẽ thêm đến các đỉnh C, D, F, mỗi đỉnh một cạnh.
– Cuối cùng, ta thấy các đỉnh C, D đều có số bậc là 2. Mà hai đỉnh này ta đã vẽ xong hai cạnh cho mỗi đỉnh nên kế tiếp ta sẽ xét đến hai điểm còn lại là E, F.
Ta thấy với các đỉnh E, F, mỗi đỉnh đều đã có sẵn một cạnh đã vẽ trước đó nên ta nối một cạnh giữa hai đỉnh E và F.
Một đồ thị thỏa mãn yêu cầu bài toán là:
Chú ý: Ngoài đồ thị đã vẽ ở trên, ta có thể vẽ thêm các đồ thị khác cũng thỏa mãn yêu cầu đề bài.
Unit 6: Competitions - Những cuộc thi
SBT Toán 11 - Chân trời sáng tạo tập 1
SBT Ngữ văn 11 - Cánh Diều tập 2
Phần hai: Giáo dục pháp luật
Chủ đề 2: Nitrogen và sulfur
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11