Bài 4 trang 55 sách bài tập toán 10 - Chân trời sáng tạo

Đề bài

Tìm công thức hàm số bậc hai biết:

a) Đồ thị hàm số đi qua 3 điểm \(A\left( {1; - 3} \right),B\left( {0; - 2} \right),C\left( {2; - 10} \right)\)

b) Đồ thị hàm số có trục đối xứng là đường thẳng \(x = 3\), cắt trục tung tại điểm có tung độ bằng \( - 16\) và một trong hai giao điểm với trục hoành có hoành độ là \( - 2\)

Phương pháp giải - Xem chi tiết

a) Bước 1: Đặt phương trình dạng tổng quát \(y = a{x^2} + bx + c\)

Bước 2: Thay tọa độ các điểm mà đồ thị hàm số đi qua, lập hệ phương trình và xác định a, b, c

b) Sử dụng các tính chất của đồ thị hàm số bậc 2 và xác định các hệ số a, b, c

Lời giải chi tiết

a) Giả sử phương trình bậc 2 cần tìm có dạng tổng quát \(y = a{x^2} + bx + c\)

Đồ thị hàm số cắt trục tung tại điểm \(B\left( {0; - 2} \right)\) nên \(c =  - 2\). Vậy phương trình có dạng \(y = a{x^2} + bx - 2\)

Mặt khác đồ thị hàm số đi qua điểm \(A\left( {1; - 3} \right),C\left( {2; - 10} \right)\) thay tọa độ hai điểm vào phương trình \(y = a{x^2} + bx - 2\)ta có hệ sau:

\(\begin{array}{l}\left\{ \begin{array}{l} - 3 = a{.1^2} + b - 2\\ - 10 = a{.2^2} + b.2 - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b =  - 1\\4{\rm{a}} + 2b =  - 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 3\\b = 2\end{array} \right.\\\end{array}\)

Vậy hàm số cần tìm có công thức là \(y =  - 3{x^2} + 2x - 2\)

b) Giả sử phương trình bậc 2 cần tìm có dạng tổng quát \(y = a{x^2} + bx + c\)

Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \( - 16\) suy ra \(c =  - 16\)

Suy ra hàm số có công thức dạng \(y = a{x^2} + bx - 16\)

Đồ thị hàm số có trục đối xứng là đường thẳng \(x = 3 \Rightarrow  - \frac{b}{{2a}} = 3 \Rightarrow b =  - 6{\rm{a}}\) (1)

Mặt khác đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng \( - 2\)nên \(0 = a{\left( { - 2} \right)^2} + b\left( { - 2} \right) - 16 \Leftrightarrow 4a - 2b = 16\) (2)

Từ (1) và (2) ta tìm được \(a = 1,b =  - 6\)

Vậy hàm số cần tìm có dạng \(y = {x^2} - 6x - 16\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved